S SAFRAN \/m E
Morpho

ANR-ASTRID SERTIF :
Simulation for the Evaluation of Robustness of

embedded Applications against Fault injection
ANR-14-ASTR-0003-01

http://sertif-projet.forge.imag.fr/
Marie-Laure Potet!, Jessy Clediere?, Thanh-Ha Le3

(1) Laboratoire VERIMAG, Université de Grenoble-Alpes
(2) CEA-LETI
(3) SAFRAN IDENTITY AND SECURITY

11 octobre 2016

KR 7 ASTRID L

h

Context

= Secure components (Hardware and Software) providing security
services (authentification, cryptography) and secure storage of
information.

Es

» Attractive targets for attackers

» Can be physically attacked

= Must be protected against high level attack potential (AVA-VAN.5)

R 7 ASTRID 2

Fault injection

» Perturbation attacks (EM or laser) = fault injection.

» Fault injection modifies the control and data flows.

1 int verify(char buffer[4]) { 1|l MOV RO, #00h ; % = 0
2 int 1i; 2| MOV R3, #01h ; authenticated = 1
3 int authenticated = 1; 3(| JMP WHILE
4 // comparison loop 4|/ DO:
5 for(i = 0; i < 4; i++) { 5| MOV R2, [buffer+il
6 if (buffer[i] != pin[i]) { 6|| MOV A, [pin+i]
7 authenticated = 0; 7|| CMP A, R2
8 b s|| JE ITER ; buffer[i] == pin[i]?
9 ¥ 9|| MOV R3, #00h ; authenticated = 0
10 // CM: redundant check w0|| ITER:
1 if (i !'=4) { // ¢cH 1 || INC RO ; i++
12 muteCard () ; 12|| WHILE:
13 ¥ 13|| MOV A, RO
14 return authenticated; 14| CMP A, #04h
15 } 15| JB DO ; 4 < 42

16| MOV A, RO

17|| CMP A, #04h

18| JNE muteCard ; 7 != 472

19(| MOV A, R3

20 (| RET

— .
4 ASTRID

DGA 3/21

Fault injection

» Perturbation attacks (EM or laser) = fault injection.

» Fault injection modifies the control and data flows.

1 int verify(char buffer[4]) { 1|| MOV RO, #00h ; 7 = O
2 int 1i; 2| MOV R3, #01h ; authenticated = 1
3 int authenticated = 1; 3(| JMP WHILE
- ! || wov

5| MOV R2, [buffer+i]
5 for(i = 0; i < 4; i++) { o|| MOV A, [pin+il
6 if (buffer[i] != pinl[il) { || cup A, R2
7 authenticated = 0; s|| JE ITER ; buffer[i] == pin[i]?
8 ¥ 9| MOV R3, #00h ; authenticated = 0
9 } 0|| ITER:
10 - 11|| INC RO ; 4++
1 if (i '=4) { // cM 12|| WHILE:
12 muteCard () ; 13|| MOV A, RO
13 3} 14 (| CMP A, #04h
14 return authenticated; 15H-
5} || MOV A, RO

17| CMP A, #04h

18|| JNE muteCard ; 1 /= 4%

19|/ MOV A, R3

20|| RET

= .
P
A ASTRID

3/21

Fault injection

> Perturbation attacks (EM or laser) = fault injection.
» Fault injection modifies the control and data flows.

1 int verify(char buffer([4]) { 1| mov ro, #offlln ; i = 0
2 int i; 2|| MOV R3, #01h ; authenticated = 1
3 int authenticated = 1; 3| JMP WHILE
4 // comparison loop 4+l DO:
5 tor(i = [l 1 < 45 i+0) s5|| MOV R2, [buffer+il
6 if (buffer[i] != pin[il) { ©|| MOV A, [pin+i]
7 authenticated = 0; 7|| CMP A, R2
. } ¢|| JE ITER ; buffer[i] == pin[i]?
9 } 9| MOV R3, #00h ; authenticated = 0
10 // CM: redundant check lof| ITER:
1 if (i1=4) { //cn 1| INC RO g4+
12 muteCard (); 12| WHILE:
13 } 13|| MOV A, RO
14 return authenticated; 14|\ CMP A, #04h
15} 15| JB DO ; 4 < 472
16| MOV A, RO
17| CMP A, #04h
18| JNE muteCard ; 7 != 472
19(| MOV A, R3
20 (| RET

4 ASTRID

DGA 3/21

Assessing Robustness Against Fault Injection
Is an embedded application robust against fault injection?
» Penetration Testing: Physical perturbation attacks on the
application under test to inject faults.
> Look for successful attacks (=compromising security).
» Factors for Attack Potential Calculation
» Code Analysis: Detect vulnerabilities in the application with a
code review.
> Look for attack paths using a given fault model.
» Originally manual process, now with automatic tools

» Success rate T = %

E Equipment Fault Model
actor. Perturbation Attack
Elapsed Time :
: Divitee Analysis/Tool
Expertise under test
Knowledge of the TOE Fault Injection
Access to the TOE Vulnerabilities
Equipment
Open Samples Elapsed Time (ET) [T/

Table: Factors of

Attack Potential .
Figure: The 2 processes

R 7 ASTRID

4/21

Sertif objectives

Consortium:
» CEA-LETI: J. Clédiere, L. Dureuil, Ph. de Choudens, C. Dumas

» SAFRAN Identity and Security: Thanh-Ha Le, Ch. Cachelou, A.
Crohen, L. Riviére

» Vérimag: ML Potet, L. Mounier, G. Petiot

Main objective: rationalize and automate as much as possible the
robustness assessment process (for evaluator and developer) w.r.t. the
state-of-the-art (spatial and temporal multiple faults) including
reproductivity and re-evaluation.

More concretely:
» Combination between physical attacks and code review
» Simulation tools evaluation (including robustness criteria)

» Evaluation of countermeasure relevance

R 7 ASTRID)

Open problems ... and some results

> A better articulation between code review and penetration testing

» How to link code vunerabilities with penetration test and vice versa?
> how to be confident in the used fault model?

= Cardis 15, Lionel Riviére PhD thesis, Louis Dureuil PhD thesis (next
talk)
= ...

» Code analysis by tools

> Automatisation: a reproductible, complete and timeless process
> Generally a combinatorial process producing a lot of attacks
> Measures of robustness?

= 3 types of tools: Lazart (Vérimag), CELTIC (CEA), EFS (SAFRAN)
and the FISSC benchmark
= ...

R 7 ASTRID o)

Lazart (Vérimag)

= C code robustness evaluation against fault injection using symbolic
execution

li1l
o CFG

| Mutation Mutant | 2Pl
Coloring | Strategy
| os))

Generation

Attack

Objective
2

mutantll

Symbolic test (3)
case generation | =/
4
Attack path Inconclusive Robustness

» Fault model: condition inversion, skip call, data modification
» Goal: Reach or avoid a CFG block or a logical formula
» Possibility of multiple fault injection scenarios

<R 7 ASTRID s

Lazart (2)

= a high-level tool dedicated to logical weakness in the algorithms.

» An interactive tool (to play with fault injection): symbolic inputs,
oracles and fault models

» Based on Klee, a concolic tool for LLVM. Potentially activates all

possible paths and fault injections.

» A notion of redundant attacks (fault injection points)

» Scenario representation in terms of graphs

Verifypin_2 example:

#fault injection | #attacks | #non redundant attacks
1 2 2
2 9 1
3 19 0
4 21 1
NR oba ASTRID

8/21

EFS (SAFRAN Identity and Security)

» Embedded Fault Simulator: An embedded tool within the target
device (e.g. smartcard), running at Hardware Abstraction Layer.

Attack
Parameters

EFS Handler

Testcase

Response & Fault Generation
classification

Host
Computer
x : Attack Paths @ ﬂ
IC Response
: Inconclusive
it @ smartcara
: Robustness

» Fault mechanism: a subroutine with a high priority level, granting
read /write access to all the component registers and memories.

» Fault models: allows arbitrary code to be executed in an interruption
(e.g. register value modification, RAM maodification, instruction
skipping/replacement, arbitrary jumps. ..).

» Advantages:

> fault injections on physical component.
> side-channel observations.

R 7 ASTRID o)

EFS (2)

Results obtained with the EFS:

> For each of the execution cycle of the targeted routine(s), we

collect:
> The routine(s) response

» The address of the attacked instruction

» An externalized Oracle analyses the responses
» Results on AES last round with fault model PC + PC + 2

Fault rate
Fault type without CM | with CM
No attack 4683 % | 4.683 %
Board reboot 5785 % | 6.336 %
Coutermeasure activated 0.0 % | 88.430 %
One byte difference on output 76.309 % 0.0 %
2 to 15 bytes differencies on output 0.275 % 0.0 %
Random output 9.091 % | 0.551 %
Z. ASTRID

CELTIC (by CEA-LETI)

Native smartcard binaries simulation with fault injection.

Fault model

Faulty
executions

Architecture file

Successful Filter
attacks Fs

Architecture file

Simulator

» Custom Architecture Description Language for retargetability.

» Exhaustive injection campaign at the binary level

» Fault models: base library extensible with scripts (fault model
composition)

> User-defined victory oracles.

» JIT-enabled simulation for improved performance

TR 7 ASTRID .

CELTIC (2)
CELTIC Outputs:
» Execution trace for the Golden Run
» The list Fs of successful attacks.
» For each successful attack:

> Characteristics of the fault (address, instant, type of fault)
> Faulty execution trace

10

) ﬁFa\se ositive)) !
‘ B v 7
| * 9 S
i t* &
0.8 ;
i
I
_ 1?
= "
Zos . ‘;
= 1
g i Ti
s i it
£ 1 i
£ 04 T i
e 1 i
i it
i it
1 i
i i
02 I) § i
1 | False negatives i
I i
o i i
0.0
0x100036 0x100040 0x10004a 0x100054 0x10005e 0x100068
Location ¢
— .
//
oba ASTRID

12/21

FISSC: our secure collection

= a Fault Injection and Simulation Secure Collection
Objectives:

» Evaluation of simulation tools

» Evaluation of (hardened) implementations

Difficulties:
» No available collected examples
» Tools dedicated to various fault models and levels of code

» How to compare results? Attacks?

Our proposal:
> A collection of (extensible) examples
» High level attack scenarios with regard to success oracles

» Matching criteria between results (by address or by fault model)

-7 ASTRID o

NR DGA

Contents

Examples:
Example Oracle
VerlfyPIN g_authenticated == 1
Vel’lfyPlN g_ptc >= 3
AES KeyCopy ! equal(key, keyCpy)
GetChaIIenge equal(challenge, prevChallenge)
CRT-RSA (g_cp == pow(m,dp) % p && g_cq != pow(m,dq) % q)
Il (g_cp '= pow(m,dp) % p && g_cq == pow(m,dq) % q)

Countermeasures: hardened booleans, virtual stack, double arguments,
step counter, loop counter, data redundancy, double calls, double tests,
control flow integrity

Programming Features: Explicit call, Fixed Time Loops, inlining

R A ASTRID m

Results

» Normalized and modular examples

» C sources and Thumb-2 assembly
listings I - RS
77 7 AN I

» high-level attack scenarios on CFG i e
pER
(ffa o S N b s
o e B \\

Example 1-fault atk 2-fault atk N |

VerifyPIN e

~+fixed time loops

+FTL +inlining

+FTL +INL +loop counter
+FTL +double calls

+FTL +INL +double tests
+FTL +INL +DT +step counter
~+control flow integrity

+FTL +INL +DT +4SC +CFl

OCOOOONNNN
HFNNWRAROHRHREO

CFG fo \erfyPIN 2 fution

<R 7 ASTRID .

Using the benchmark

v

Get http://sertif-projet.forge.imag.fr/

v

Analyze C sources, asm listings

» Compare your results against the archived results

v

Contribute your examples, countermeasures and results

= An example with results using CELTIC and EFS:
http://sertif-projet.forge.imag.fr/pages/example.html

A first piece. ..

R 7 ASTRID o)

http://sertif-projet.forge.imag.fr/
http://sertif-projet.forge.imag.fr/pages/example.html

HL scenario coverage

C line

21 22 20 23 25 FZE 2 3 4 12

! L e [[! [e unmatched

3 [: ; ‘ : | | | A by fault model

! ! ! ! ! ! ! ! v by address
B o [[! |® byboth

s B EE. s Y
£100f I i I I I I | | | [!
3| : ‘ ‘ .
| [[[[[
g ' I /: ' ' ' ' ' ' ' Lo 3
: 1 o
5| [| - Lo [[
E T [T 0 0 [|
2 sof ! | '

8 D Lo Ve * ¢ te |

of! [X N * 0 vyiv: ¢ e °

416 4lbadlbc 41bf4lcl 415 41c8..41d2 31d7...41de 4lel Tie6 4169 4leb —an

ASM address

Figure: Matching HL and LL attacks

-7 ASTRID

DGA 17 /21

An open problem: Fault Injection Code Metrics

= How results can be evaluated?

» |dentify sensitive points in a code

» Propose a vulnerability rate (evaluator’s point of view). For instance:

|successful attack|

|realized attacks|

» Determine how to harden the code (developer's point of view):
regroup “equivalent” attacks

Metrics difficulties:
» Attacker's model

> sensibility to the size of code

R 7 ASTRID o)

An open problem: Countermeasures analysis

Objectives:

» How to choose adapted countermeasures ?

» depend on the fault model
> could be costly
» complexity due to multiple fault injection (CM can be attacked)

Open problems:
» Define and test metrics against various hardened examples
» Cost and comparison between classical countermeasures

» Dedicated analysis to establish dependency between contermeasures
and assets to be protected

R 7 ASTRID o)

An open problem: a process mixing code analysis and
penetration testing

With a good knowledge of possible attacker's parameter for a given
device is it possible to mainly use simulation tools?

» How to determine precisely an attacker model for a given device?

» component characterization against EM, laser, FBBI. ..
> how to reveal only flash modification, registers modifications from
RAM modifications, during data transfer or its storage ...

» A more reproductible and automatic process compatible with a
certification process?

R 7 ASTRID

20/ 21

References

Louis Dureuil: Analyse de code et processus d'évaluation des composants sécurisés
contre |'injection de fautes. PhD thesis, October 2016

L. Dureuil, G. Petiot, M-L. Potet, T-H. Le, A. Crohen and P. de Choudens. FISSC: a
Fault Injection and Simulation Secure Collection SAFECOMP 2016.

L. Dureuil, M-L. Potet, P. de Choudens, C. Dumas and J. Clédiére. From Code Review
to Fault Injection Attacks: Filling the Gap using Fault Model Inference. Cardis 2015.

Lionel Riviére. Securing software implementations against fault injection attacks on
embedded systems. PhD thesis, TELECOM ParisTech, Paris, September 2015.

L. Riviere, M-L. Potet, T-H. Le, J. Bringer, H. Chabanne and M. Puys. Combining
High-Level and Low-Level Approaches to Evaluate Software Implementations
Robustness Against Multiple Fault Injection Attacks. FPS 2014

L. Riviere, Z. Najm, P. Rauzy, J-L. Danger, J. Bringer, Laurent Sauvage: High
precision fault injections on the instruction cache of ARMv7-M architectures. HOST
2015

M-L. Potet, L. Mounier, M. Puys and L. Dureuil. Lazart: a symbolic approach to
evaluate the impact of fault injections by test inverting. ICST 2014, International
Conference on Software Testing.

M. Berthier, J. Bringer, H. Chabanne, T-H. Le, L. Riviére, V. Servant. ldea:
Embedded Fault Injection Simulator on Smartcard. ESSoS 2014

=

<R 7 ASTRID .

	Objectives of the Sertif project

