
Results

Aude Crohen Louis Dureuil Guillaume Petiot
Marie-Laure Potet

July 8, 2016

Abstract

This document explains and compares the results found with three of
the tools of the partners, Lazart, Celtic and Efs, on an example from
the Secure Collection. 1

1 Attacks found on VerifyPIN (version 2 HB+FTL auth)

The considered VerifyPIN example is presented in listing 3. It implements the
following countermeasures:

• boolean encoding (0xAA is true,0x55 is false);

• loop iteration counter in the function byteArrayCompare.

The g_authenticated variable is initialized to BOOL_FALSE and the attack
objective is for the variable to have the value BOOL_TRUE at the end of the
execution, although the PIN is incorrect. A PTC modification up to 0x03 may
be also considered as a successful attack as it may allow a brute-force attack on
the PIN value.

The byteArrayCompare function is implemented as described in listing 2.
This function uses the function countermeasure (described in listing 1) as a
detection attack method. For our code test needs, this function only set a flag
which can be checked on purpose.

1 #define BOOL_TRUE 0xAA

2 #define BOOL_FALSE 0x55

3 typedef unsigned char UBYTE;

4 typedef unsigned char BOOL;

5

6 void countermeasure()

7 {

8 g_countermeasure = 1;

9 }

Listing 1: Defines and Implementation of countermeasure

We will now detail the vulnerabilities detected by some security tools on
this example. We consider Lazart (Laser Attack Robustness), a framework

1http://sertif-projet.forge.imag.fr/pages/benchmark.html

1

http://sertif-projet.forge.imag.fr/pages/benchmark.html

1 BOOL byteArrayCompare(UBYTE* a1, UBYTE* a2)

2 {

3 int i = 0;

4 BOOL status = BOOL_FALSE;

5 BOOL diff = BOOL_FALSE;

6 for(i = 0; i < PIN_SIZE; i++) {

7 if(a1[i] != a2[i]) {

8 diff = BOOL_TRUE;

9 }

10 }

11 if(i != PIN_SIZE) {

12 countermeasure();

13 }

14 if (diff == BOOL_FALSE) {

15 status = BOOL_TRUE;

16 }

17 else {

18 status = BOOL_FALSE;

19 }

20 return status;

21 }

Listing 2: Implementation of byteArrayCompare

1 void VerifyPIN()

2 {

3 g_authenticated = BOOL_FALSE;

4

5 if(g_ptc > 0) {

6 if(byteArrayCompare(g_userPin, g_cardPin) == BOOL_TRUE) {

7 g_ptc = 3;

8 g_authenticated = BOOL_TRUE; // Authentication();

9 }

10 else {

11 g_ptc--;

12 }

13 }

14 }

Listing 3: Implementation of VerifyPIN

for the evaluation of the robustness of software against multiple fault injections.
Lazart relies on the symbolic test generator Klee and focuses on faults dis-
rupting the control flow graph. We also consider the generic smartcard and
fault injection simulator Celtic. Celtic generates each possible mutant of the
code under analysis according to a fault model, simulates the execution of each
mutant, and evaluates the vulnerability of the application. Finally, we consider
Efs (Embedded Fault Simulator). Efs is a software framework allowing smart
card developers to perform on-target fault injection simulations on a running

2

application.

2 Results for Lazart

The following table indicates for each LLVM block what is the first correspond-
ingline number in the source code, and the corresponding function (“bAC” for
byteArrayCompare, “VPIN” for VerifyPIN).

entry if.then for.cond.i for.body.i if.then.i if.end.i for.end.i if.then8.i
VPIN VPIN bAC bAC bAC bAC bAC bAC

l.3 l.6 l.6 l.7 l.8 l.9 l.11 l.12

if.end9.i if.then13.i if.else.i byteArrayCompare.exit if.then5 if.else if.end if.end6
bAC bAC bAC VPIN VPIN VPIN VPIN VPIN
l.14 l.15 l.18 l.6 l.7 l.12 l.14 l.15

On this example, Lazart detected two 1-fault attacks, one 2-faults attacks,
zero 3-faults attacks and one 4-faults attacks.

Example
#attacks for i faults
1 2 3 4

VerifyPIN 2 HB+FTL auth 2 1 0 1

2.1 1-fault attacks

2.1.1 First attack: changing the returned value of byteArrayCompare

The first attack (the LLVM CFG is displayed bellow) consists in inverting the
condition of the block if.end9.i to reach the block if.then13.i (branch then) in-
stead of the block if.else.i (branch else). The block if.end9.i corresponds to the
line 14 of the function byteArrayCompare: if(diff == BOOL_FALSE). This
fault leads to the execution of the block if.then13.i, corresponding to the line 15
of byteArrayCompare: status = BOOL_TRUE;. The program’s execution then
proceeds normally. This fault changes the value returned by byteArrayCompare:
BOOL_TRUE is returned when the PIN comparison fails, so we can authenticate
with an incorrect PIN.

3

2.1.2 Second attack: ignore the returned value of byteArrayCompare

This second attack (the LLVM CFG is displayed bellow) consists in inverting
the condition of the block byteArrayCompare.exit to reach the block if.then5
instead of the block if.else. The block byteArrayCompare.exit corresponds to
the line 6 of VerifyPIN: if(byteArrayCompare(g_userPin, g_cardPin)==

BOOL_TRUE). This faults leads to the execution of the block if.then5, correspond-
ing to the line 7 of VerifyPIN (g_ptc = 3;), instead of the block starting at line
12 of VerifyPIN (g_ptc--). The program’s execution then proceeds normally.
This fault allows to ignore the value returned by the function byteArrayCompare

so we can authenticate with an incorrect PIN.

4

2.2 2-faults attack

The 2-faults attack consists in inverting the loop condition before the first
loop iteration, so that the loop is not executed, then inverting the test i !=

PIN_SIZE to not trigger the countermeasure. This attack succeeds because
diff = BOOL_FALSE is executed before the loop.

2.3 4-faults attack

The 4-fault attack consists in injecting a fault during the PIN comparison: a
fault for each invalid character (for a PIN of size 4).

5

3 Results for Celtic

Celtic is a dynamic simulator of binary smartcards, able to inject faults during
the simulation. Celtic is being developed at the CEA-LETI, and currently
supports a wide range of fault models and is able to simulate several machines.

3.1 Assembly listings

We provide the assembly listings for both byteArrayCompare and VerifyPIN:

1 080041a8 <byteArrayCompare>:

2 80041a8 b570 push {r4, r5, r6, lr}

3 80041aa 2200 movs r2, #0

4 80041ac 2455 movs r4, #85 ; 0x55

5 80041ae 5c83 ldrb r3, [r0, r2]

6 80041b0 5c8d ldrb r5, [r1, r2]

7 80041b2 42ab cmp r3, r5

8 80041b4 d000 beq.n 80041b8 <byteArrayCompare+0x10>

9 80041b6 24aa movs r4, #170 ; 0xaa

10 80041b8 1c52 adds r2, r2, #1

11 80041ba 2a04 cmp r2, #4

12 80041bc dbf7 blt.n 80041ae <byteArrayCompare+0x6>

13 80041be d001 beq.n 80041c4 <byteArrayCompare+0x1c>

14 80041c0 f000 f826 bl 8004210 <countermeasure>

15 80041c4 2c55 cmp r4, #85 ; 0x55

16 80041c6 d001 beq.n 80041cc <byteArrayCompare+0x24>

17 80041c8 2055 movs r0, #85 ; 0x55

18 80041ca bd70 pop {r4, r5, r6, pc}

19 80041cc 20aa movs r0, #170 ; 0xaa

20 80041ce bd70 pop {r4, r5, r6, pc}

Listing 4: Assembly listing of byteArrayCompare for Celtic tests

6

1 080041d0 <verifyPIN_A>:

2 80041d0 b570 push {r4, r5, r6, lr}

3 80041d2 4d0b ldr r5, [pc, #44] ; (8004200 <verifyPIN_A+0x30>)

4 80041d4 4c0b ldr r4, [pc, #44] ; (8004204 <verifyPIN_A+0x34>)

5 80041d6 2055 movs r0, #85 ; 0x55

6 80041d8 7028 strb r0, [r5, #0]

7 80041da f994 0000 ldrsb.w r0, [r4]

8 80041de 2800 cmp r0, #0

9 80041e0 dd08 ble.n 80041f4 <verifyPIN_A+0x24>

10 80041e2 4909 ldr r1, [pc, #36] ; (8004208 <verifyPIN_A+0x38>)

11 80041e4 4809 ldr r0, [pc, #36] ; (800420c <verifyPIN_A+0x3c>)

12 80041e6 f7ff ffdf bl 80041a8 <byteArrayCompare>

13 80041ea 28aa cmp r0, #170 ; 0xaa

14 80041ec d003 beq.n 80041f6 <verifyPIN_A+0x26>

15 80041ee 7820 ldrb r0, [r4, #0]

16 80041f0 1e40 subs r0, r0, #1

17 80041f2 7020 strb r0, [r4, #0]

18 80041f4 bd70 pop {r4, r5, r6, pc}

19 80041f6 2003 movs r0, #3

20 80041f8 7020 strb r0, [r4, #0]

21 80041fa 20aa movs r0, #170 ; 0xaa

22 80041fc 7028 strb r0, [r5, #0]

23 80041fe bd70 pop {r4, r5, r6, pc}

24 8004200 20008014 .word 0x20008014

25 8004204 20008015 .word 0x20008015

26 8004208 2000801b .word 0x2000801b

27 800420c 20008017 .word 0x20008017

Listing 5: Assembly listing of VerifyPIN for Celtic tests

3.2 Results

On the considered example, Celtic detected 432 attacks, using the “‘exhaus-
tive byte replacement” fault model, where 1 byte of the code is replaced with
another value during the execution of the code, and 3 successful attacks using
the NOP fault model, where 1 instruction of the code is replaced with a NOP
instruction. The table below details the number of attacks found at each mem-
ory address in the exhaustive byte replacement fault model. We give a name
to some selected attacks for later reference and proceed to explain them in the
following paragraphs.

7

Address Number of attacks Name given
0x80041d6 1.0
0x80041d9 1.0
0x80041db 1.0
0x80041e2 1.0

0x80041e3 8.0 jump in auth
0x8004208 2.0
0x80041e4 1.0
0x80041e5 8.0
0x800420c 1.0
0x80041b4 5.0
0x80041b8 5.0
0x80041b9 6.0
0x80041ba 1.0
0x80041bc 4.0

0x80041bd 29.0 skip loop
0x80041b7 1.0
0x80041b6 1.0
0x80041be 2.0
0x80041c4 1.0

0x80041c5 63.0 skip compare
0x80041c7 8.0 skip branch
0x80041c8 1.0
0x80041c9 6.0

0x80041cb 119.0 skip return
0x80041ea 1.0
0x80041eb 4.0
0x80041ed 8.0
0x80041ef 1.0
0x80041f3 6.0

0x80041f5 136.0 skip return

Table 1: Number of attacks per address

3.3 Attack skip compare

This attack results in us forcing our way in the if part of the conditional state-
ment line 14 of byteArrayCompare. Indeed, this if is implemented in the fol-
lowing way:

1 80041c4 2c55 cmp r4, #85 ; 0x55

2 80041c6 d001 beq.n 80041cc <byteArrayCompare+0x24>

3 80041c8 2055 movs r0, #85 ; 0x55

4 80041ca bd70 pop {r4, r5, r6, pc}

5 80041cc 20aa movs r0, #170 ; 0xaa

6 80041ce bd70 pop {r4, r5, r6, pc}

By replacing the cmp instruction at address 0x41c4 with an instruction that
sets the Z flag, the branch beq instruction at address 0x41c6 is taken, and the
execution goes in the if branch of the conditional statement. For instance, this
instruction can be replaced with an instruction to assign a register with another
register, whose value is 0, as this sets the Z flag.

8

3.4 Attack skip branch

This attack is similar to the attack skip compare and targets the same condi-
tional statement. However, instead of replacing a cmp instruction, it replaces
the beq instruction with another branch instruction, which is taken (either be-
cause it is unconditional or because its condition is met), for instance bne. There
are 8 such branch instructions.

3.5 Attack skip return

This attack results in us forcing our way in the if part of the conditional state-
ment at line 6 of VerifyPIN or at line 19 of byteArrayCompare. Indeed, the
conditional statement at line 6 of VerifyPIN is implemented in the following
way:

1 80041ea 28aa cmp r0, #170 ; 0xaa

2 80041ec d003 beq.n 80041f6 <verifyPIN_A+0x26>

3 80041ee 7820 ldrb r0, [r4, #0]

4 80041f0 1e40 subs r0, r0, #1

5 80041f2 7020 strb r0, [r4, #0]

6 80041f4 bd70 pop {r4, r5, r6, pc}

7 80041f6 2003 movs r0, #3

8 80041f8 7020 strb r0, [r4, #0]

9 80041fa 20aa movs r0, #170 ; 0xaa

10 80041fc 7028 strb r0, [r5, #0]

11 80041fe bd70 pop {r4, r5, r6, pc}

In this snippet, the beq instruction at address 0x41ec is normally not taken
(because the result of the call to byteArrayCompare is BOOL_FALSE), therefore
the else branch of the conditional is executed (from address 0x41ee to 41f4) and
returns from the function with the pop instruction at 41f4. By replacing the
pop instruction at address 0x41f4 with any instruction that is not a (taken)
branch, we remove the implied return at the end of the else branch of the
conditional statement, and we continue the execution in the if branch of the
conditional, therefore executing both branches of the conditional, with the if
branch overwriting the effect of the else branch.

Similarly, the conditional statement at line 19 of byteArrayCompare is im-
plemented as follows:

1 80041c4 2c55 cmp r4, #85 ; 0x55

2 80041c6 d001 beq.n 80041cc <byteArrayCompare+0x24>

3 80041c8 2055 movs r0, #85 ; 0x55

4 80041ca bd70 pop {r4, r5, r6, pc}

5 80041cc 20aa movs r0, #170 ; 0xaa

6 80041ce bd70 pop {r4, r5, r6, pc}

Again, the beq instruction at address 0x41c6 is not taken (because the diff

variable equals BOOL_TRUE), and the else branch is executed. By replacing the
pop instruction at address 0x41ca with any instruction that is not a (taken)
branch, we remove the implied return at the end of the else branch of the
conditional statement, and we continue in sequence with the if branch of the
conditional, therefore executing both branches of the conditional, with the if
branch overwriting the effect of the else branch.

9

3.6 Attack skip loop

The loop iteration counter at line 11 of byteArrayCompare has been compiled
in the following way:

1. Comparison of i wih the value 4:

1 80041ba 2a04 cmp r2, #4

2 80041bc dbf7 blt.n 80041ae <byteArrayCompare+0x6>

3 80041be d001 beq.n 80041c4 <byteArrayCompare+0x1c>

2. Conditional jump in the loop body if the comparison returns <

1 80041bc dbf7 blt.n 80041ae <byteArrayCompare+0x6>

3. Conditional jump to countermeasure() if the comparison does not return
==

1 80041be d001 beq.n 80041c4 <byteArrayCompare+0x1c>

2 80041c0 f000 f826 bl 8004210 <countermeasure> ; goto countermeasure

3 80041c4 2c55 ... ; continue executing

The attack replaces the first conditional jump with an arithmetic instruction
that sets the Z flag (used in equality comparison). For instance:

1 41be 0af7 lsr r7, r6, #11

which shifts the content of the register r6 by 11 bits. If r6 < 211, then the
result is 0 and the Z flag is set.

3.7 Attack jump in auth

During this attack, we replace the following instruction:

1 80041e2 4909 ldr r1, [pc, #36] ; (8004208 <verifyPIN_A+0x38>)

By stomping the upper byte of this instruction at address 0x41e3, it is pos-
sible to replace it with a branching instruction, e.g.:

1 80041e2 e009 b 80041f8 ;

(by replacing 0x48 with 0xe0)
Due to the layout of the code and the encoding of the original instruction,

the offset happens to be #22, which jumps to address 0x41f8, i.e., the following
instruction:

1 80041f8 7020 strb r0, [r4, #0]

This instruction is the middle of the assignment at line 6 of the VerifyPIN

function, and will set g_ptc at whatever value is contained in r0. Then, the
authentication code will be executed in sequence.

10

4 Results for EFS

4.1 Assembly listings

In order to perform the result analysis, we provide the generated assembly code
of the targeted functions for the attack.

1 <byteArrayCompare>:

2 0x08080040 B570 PUSH {r4-r6,lr}

3 0x08080042 2200 MOVS r2,#0x00 ; i <- 0;

4 0x08080044 2455 MOVS r4,#0x55 ; r4 <- diff = BOOL_FALSE;

5 ; ’for’ loop beginning

6 0x08080046 5C83 LDRB r3,[r0,r2] ; r3 <- a1[i]

7 0x08080048 5C8D LDRB r5,[r1,r2] ; r5 <- a2[i]

8 0x0808004A 42AB CMP r3,r5 ; a1[i] a2[i] comparison

9 0x0808004C D000 BEQ 0x0800245A ; branch if a1[i] and a2[i] equal

10 0x0808004E 24AA MOVS r4,#0xAA ; diff = BOOL_TRUE

11 0x08080050 1C52 ADDS r2,r2,#1 ; i++ (loop)

12 0x08080052 2A04 CMP r2,#0x04 ; i and PIN_SIZE comparison

13 0x08080054 DBF7 BLT 0x08002450 ; branch if i < PIN_SIZE (loop)

14 0x08080056 D001 BEQ 0x08002466 ; branch if i == PIN_SIZE (CM)

15 0x08080058 F000F806 BL.W countermeasure (0x08002474)

16 0x0808005C 2C55 CMP r4,#0x55 ; diff = BOOL_FALSE ?

17 0x0808005E D001 BEQ 0x0800246E ; branch if diff == BOOL_FALSE

18 ; if diff != BOOL_FALSE

19 0x08080060 2055 MOVS r0,#0x55 ; return BOOL_FALSE

20 0x08080062 BD70 POP {r4-r6,pc} ; POP r0

21 ; if diff == BOOL_FALSE

22 0x08080064 20AA MOVS r0,#0xAA ; return BOOL_TRUE

23 0x08080066 BD70 POP {r4-r6,pc} ; POP r0

Listing 6: Assembly listing of byteArrayCompare for Efs tests

11

1 <verifyPIN>:

2 0x08080000 B570 PUSH {r4-r6,lr}

3 0x08080002 4D0B LDR r5,[pc,#44] ; r5 <- g_authenticated

4 0x08080004 4C0B LDR r4,[pc,#44] ; r4 <- g_ptc

5 0x08080006 2055 MOVS r0,#0x55 ; r0 <- BOOL_FALSE

6 0x08080008 7028 STRB r0,[r5,#0x00] ; g_authenticated <- r0

7 0x0808000A 7820 LDRB r0,[r4,#0x00] ; r0 <- g_ptc

8 0x0808000C 2800 CMP r0,#0x00 ; ptc and 0 comparison

9 0x0808000E D008 BEQ 0x08002342 ; branch if g_ptc == 0

10 0x08080010 4909 LDR r1,[pc,#36] ; r1 = g_userPin

11 0x08080012 480A LDR r0,[pc,#40] ; r0 = g_cardPin

12 0x08080014 F000F814 BL.W byteArrayCompare (0x0800244A) ; return in r0

13 0x08080018 28AA CMP r0,#0xAA ; result & BOOL_TRUE comparison

14 0x0808001A D003 BEQ 0x08002344 ; branch if result == BOOL_TRUE

15 ; if r0 != BOOL_TRUE

16 0x0808001C 7820 LDRB r0,[r4,#0x00] ; r0 <- g_ptc

17 0x0808001E 1E40 SUBS r0,r0,#1 ; r0 <- r0 - 1

18 0x08080020 7020 STRB r0,[r4,#0x00] ; g_ptc <- r0 (= g_ptc-1)

19 0x08080022 BD70 POP {r4-r6,pc} ; POP verifyPIN result

20 ; if r0 == BOOL_TRUE

21 0x08080024 2003 MOVS r0,#0x03 ; r0 <- 3

22 0x08080026 7020 STRB r0,[r4,#0x00] ; g_ptc <- r0 (g_ptc <- 3)

23 0x08080028 20AA MOVS r0,#0xAA ; r0 <- 0xAA = BOOL_TRUE

24 0x0808002A 7028 STRB r0,[r5,#0x00] ; g_authenticated <- r0 = 0xAA

25 0x0808002C BD70 POP {r4-r6,pc} ; POP verifyPIN result

Listing 7: Assembly listing of VerifyPIN for Efs tests

4.2 Fault model: simple fault with PC modification

The fault model considered here consists in adding n bytes to the PC value
(Program Counter). This modification skips n/m instructions, where m is the
size of a single instruction. On the STM32 board, instructions are 2 or 4 bytes
wide.

The fault model applied in this study is the PC ← PC + 2, so that instruc-
tions on two bytes are bypassed, but not the 4 bytes instructions.

The verifyPIN code requires 116 clock cycles to run. We apply the fault
model to each of these cycles, so we have a total of 116 attack time slots.
Depending on the number of cycles required to execute an instruction, some
instructions have been attacked sereval times. This impacts the success rate.
Depending on the pipeline’s state at the moment of the attack, the fault may
have different effects.

On this example, EFS detected the following behaviors, the details are pre-
sented in table 2. The lines highlighted in blue are considered as successful
attacks.

12

Result type Occurs Success rate Description
No attack detected (normal behaviour) 55 times 47.41 %
Reboot of the STM32 board 22 times 18.96 %
Counter-measure triggered 9 times 7.76 % 4.2.1
Successful authentication and PTC set to 3 5 times 4.31 % 4.2.2
Authentication flag set to 0x58 6 times 5.17 % 4.2.3
PTC set to 0x03 17 times 14.65 % 4.2.4
PTC set to 0x54 2 times 1.72 % 4.2.5

Table 2: Obtained result types

4.2.1 Counter-measure triggered

We have observed an activated counter-measure flag in several cases, as de-
scribed in table 3.

Address g ptc g authenticated g countermeasure Description
0x08080042 0x02 0x55 0x01 4.2.1 Case 1
0x08080052 0x03 0xAA 0x01 4.2.1 Case 2
0x08080052 0x02 0x55 0x01 4.2.1 Case 3
0x08080054 0x03 0xAA 0x01 4.2.1 Case 4
0x08080054 0x02 0x55 0x01 4.2.1 Case 5
0x08080056 0x02 0x55 0x01 4.2.1 Case 6

Table 3: Perturbations leading to activate the counter-measure

Case 1 The faults is performed on MOVS r2,#0x00 in byteArrayCompare. It
is the initialisation of i before the beginning of the for loop. As this initialization
is skipped, r2 remains to its last set value.

This case is an attack if r2 was set to a value greater than PIN_SIZE before
the call to byteArrayCompare.

Case 2 The fault is performed on CMP r2,#0x04 in byteArrayCompare, just
after the first byte comparison of the PIN. So this instruction is not executed. In
this case, the loop is reduced to a single round and diff is not set to BOOL_TRUE

because the first byte of both PINs are the same. The byteArrayCompare

function returns BOOL_TRUE, so the PTC is set to 3 and g_authenticated is set
to BOOL_TRUE.

As the CMP instruction is skipped, flags N, Z, C and V are not updated. They
keep their previous value which has been set by the previous ADD instruction.
ADD clears the N, Z, C and V flags if it performs a simple increment.

Thus, the next BLT at 0x08080054 is not taken (branch if N != V), as
well as the next BEQ (branch if Z = 1) at 0x08080056. The code falls through
BL.W countermeasure at 0x08080058, which sets the g_countermeasure flag.

Case 3 The fault is performed on CMP r2,#0x04 in byteArrayCompare, just
after the first byte comparison of the PIN. In this case, the loop is reduced to 2,
3 or 4 rounds depending on the timing of the attack. diff is set to BOOL_TRUE

13

because the 2nd, 3rd and 4th bytes of the PIN are different from those of the
reference PIN. The byteArrayCompare function returns BOOL_FALSE, so the
PTC is set to 2 and g_authenticated to BOOL_FALSE.

As the CMP instruction is skipped, flags N, Z, C and V are not updated. They
keep their previous value which has been set by the previous ADD instruction.
ADD clears the N, Z, C and V flags if it performs a simple increment. Thus, the
next BLT at 0x08080054 is not taken (branch if N != V), as well as the next BEQ
(branch if Z = 1) at 0x8002460. The code falls through BL.W countermeasure

at 0x08080058, which sets the g_countermeasure flag.

Case 4 The fault is performed on BLT 0x08080046 in byteArrayCompare,
just after the first byte comparison of the PIN. In this case, the loop is reduced
to a single round because the code doesn’t jump back to 0x08080046, even if i is
different than PIN_SIZE. diff is not set to BOOL_TRUE because the first byte of
both PINs are the same. The byteArrayCompare function returns BOOL_TRUE,
so the PTC is set to 3 and g_authenticated is set to BOOL_TRUE.

The flags set by the CMP instruction are used to evaluate BEQ 0x0808005C,
and as i is different than PIN_SIZE, the code jumps right to 0x08080058 and
calls the countermeasure function.

Case 5 The fault is performed on BLT 0x08080046 in byteArrayCompare,
after the 2nd or 3rd byte comparison of the PIN, depending on the timing of the
attack. In this case, the loop is reduced to 2 or 3 rounds because the code doesn’t
jump back to 0x08080046, even if i is different than PIN_SIZE. diff is not set
to BOOL_TRUE because the 2nd and 3rd bytes of the PIN are different from those
of the reference PIN. The byteArrayCompare function returns BOOL_FALSE, so
the PTC is set to 2 and g_authenticated to BOOL_FALSE.

The flags set by the CMP instruction are used to evaluate BEQ 0x0808005C,
and as i is different than PIN_SIZE, the code jumps right to 0x08080058 and
calls the countermeasure function.

Case 6 The fault is performed on BEQ 0x0808005C in byteArrayCompare,
after the end of the loop. In this case, the conditional branch is skipped and
the code continues at 0x08080058 and calls the countermeasure function.

4.2.2 Successful authentication and PTC set to 0x03

This result has been observed in several cases, as described in table 4.

Address g ptc g authenticated g countermeasure Description
0x0808005C 0x03 0xAA 00 4.2.2 Case 1
0x08080062 0x03 0xAA 00 4.2.2 Case 2
0x08080022 0x03 0xAA 00 4.2.2 Case 3

Table 4: Perturbations leading to a successful authentication and PTC=3

Case 1 The fault is performed on CMP r4,#0x55 in byteArrayCompare, so
this instruction is not executed.

14

So the flags N, Z, C and V are not updated, they keep their previous value
which has been set by CMP r2,#0x04. As the condition if (i != PIN_SIZE)

evaluates to true, the conditional branch BEQ 0x08080064 is taken and the
execution continues at 0x08080064.

The next instructions executed are MOVS r0,#0xAA and POP. The byteArrayCompare
function returns BOOL_TRUE.

Case 2 The fault is performed on POP {r4-r6,pc} at the end of the byteArrayCompare
function.

The execution continues with the instructions MOVS r0,#0xAA and POP of
the other branch of the byteArrayCompare function, which returns BOOL_TRUE.

Case 3 The fault is performed on POP {r4-r6,pc} at the end of the verifyPIN
function.

The execution continues at address 0x08080024. In this case, the code takes
the same branch as if byteArrayCompare returned BOOL_TRUE.

The PTC is consequently set to 3 and g_authenticated to BOOL_TRUE.

4.2.3 Authentication flag set to 0x58

The result is observed in a single case, as shown by table 5.

Address g ptc g authenticated g countermeasure

0x08080006 0x02 0x58 00

Table 5: Perturbations leading to authentication flag set to 0x58

The fault is performed on MOVS r0,#0x55 within verifyPIN function, so
this instruction is not executed.

As a consequence, the r0 register is not updated and keeps its previous
value, 0x58, which comes from the caller of verifyPIN). Then r0 is copied to
g_authenticated which is then never modified.

4.2.4 PTC set to 0x03

We get this result in several cases, as shown by table 6.

Address g ptc g authenticated g countermeasure Description
0x08080004 0x03 0x55 00 4.2.4 Case 1
0x08080040 0x03 0x55 00 4.2.4 Case 2
0x0808001E 0x03 0x55 00 4.2.4 Case 3
0x08080020 0x03 0x55 00 4.2.4 Case 4

Table 6: Perturbations leading to PTC set to 0x03

Case 1 The fault is performed on LDR r4,[pc,#44] inside the verifyPIN

function, so this instruction is not executed.

15

Consequently, the global value g_ptc is not loaded into the r4 register which
keeps its previous value coming from the caller. During the processing of instruc-
tion LDRB r0,[r4,#0x00] at address 0x080232A, the processor doesn’t read the
global value containing the PTC but another RAM element.

Given the obtained result, we can conclude that this RAM element is equal
to 0, as it seems that the execution jumped directly to the end of the function
(PTC is equal to 3 and g_authenticated to BOOL_FALSE)).

Case 2 The fault is performed on PUSH {r4-r6,lr} in the byteArrayCompare
function, so this instruction is not executed.

As a consequence, the processor enters the byteArrayCompare function with-
out pushing the r4 to r6 registers onto the stack, and without updating the lr

register (Link Register, which is equal to r14 on the STM32). At the end
of byteArrayCompare, the final POP loads the lr with the lr value that was
pushed at the beginning of verifyPIN. The global effect is that the code exits
the byteArrayCompare and verifyPIN functions without executing the end of
the verifyPIN function, so without decrementing the PTC.

Case 3 The fault is performed on SUBS r0,r0,#1 in the verifyPIN function,
so this instruction is not executed.

The PTC is not decremented.

Case 4 The fault is performed on STRB r0,[r4,#0x00] in the verifyPIN

function, so this instruction is not executed.
Consequently, the program skips the instruction responsible for storing the

local value of the PTC inside the global g_ptc value.

4.2.5 PTC set to 0x54

This result is observed in a single case as described in table 7.

Address g ptc g authenticated g countermeasure

0x0808001C 0x54 0x55 00

Table 7: Perturbations leading to PTC set to 0x54

The fault is performed on LDRB r0,[r4,#0x00] inside the verifyPIN func-
tion, so this instruction is not executed.

g_ptc is not loaded into the r0 register which keeps its previous value. This
value is BOOL_FALSE = 0x55, so g_ptc is updated with r0 -1 = 0x54.

4.3 Results comparison with other tools

4.3.1 Comparison with Lazart

Fault Model Matching

16

First attack of Lazart The first attack of Lazart described in 2.1.1
corresponds to the attack of the Efs described in section 4.2.2 Case 1. In-
deed, skipping the CMP r4,#0x55 instruction implies to invert the result of the
comparison in the specific case of this implementation.

Second attack of Lazart The second attack of Lazart described in
2.1.2 fits with two attacks of the Efs described in section 4.2.2 Case 2 and 4.2.2
Case 3. These two Efs attacks are two ways to implement this Lazart attack.

Skipping the execution of POP {r4-r6,pc} implies to execute the other
branch of the byteArrayCompare function end, and therefore force the change
of the return value.

Avoiding the execution of the POP {r4-r6,pc} at the end of the verifyPIN

function results in forcing the execution of the conditional statement in verifyPIN

function which allows the authentication.

Other attacks of Lazart The multiple fault attacks of Lazart are not
matched by single fault attacks of Efs with the fault model of PC ← PC + 2.

Matching by address In order to perform a matching by address with the
HL tool Lazart, it is possible to perform a match between the CFG produced
by LLVM and CFGs produced by IDA Pro.

We display below the flow chart produced by IDA Pro of the functions
VerifyPIN in figure 1 and byteArrayCompare in figure 2, reinforced with the
corresponding LLVM block name (highlighted in grey).

With this information, we are able to determine which assembly code line
corresponds to which LLVM block.

CFGs of LLVM and the flow chart of IDA Pro don’t perfectly match here: as
PIN_SIZE is a fixed value in byteArrayCompare implementation, the compiler
consider the for loop as a do while loop (as it will necessarily be done once).
So the for.body.i is performed prior to for.cond.i block in figure 2 while the
for.cond.i is performed prior to for.body.i block in LLVM CFG.

First attack of Lazart The first attack of Lazart described in 2.1.1
corresponds to attack the LLVM block if.then9.i, which corresponds to the ad-
dresses 0x0808005C and 0x0808005E of the assembly code attacked by the Efs
(see listing 8).

1 0x0808005C 2C55 CMP r4,#0x55 ; diff = BOOL_FALSE ?

2 0x0808005E D001 BEQ 0x0800246E ; branch if diff == BOOL_FALSE

Listing 8: EFS assembly listing of byteArrayCompare corresponding to LLVM
block if.then9.i

This attack founds one implementation with the Efs as described in 4.2.2
Case 1.

Second attack of Lazart The second attack of Lazart described in
2.1.2 corresponds to attack the LLVM block byteArrayCompare.exit, which cor-

17

responds to the addresses 0x08080018 and 0x0808001A of the assembly code
attacked by the Efs (see listing 9).

1 0x08080014 F000F814 BL.W byteArrayCompare (0x0800244A) ; return in r0

2 0x08080018 28AA CMP r0,#0xAA ; result & BOOL_TRUE comparison

3 0x0808001A D003 BEQ 0x08002344 ; branch if result == BOOL_TRUE

Listing 9: Assembly listing of VerifyPIN for Efs tests

This attack founds no implementation with the Efs with the fault model of
PC ← PC + 2.

Other attacks of Lazart The multiple fault attacks of Lazart are not
matched by single fault attacks of Efs with the simple fault model of PC ←
PC + 2.

18

Figure 1: IDA flow chart of VerifyPIN

19

Figure 2: IDA flow chart of byteArrayCompare

20

4.3.2 Comparison with Celtic

We only discuss here the address matching as the 2 tools are LL-tools and the
fault models are based on instruction modification.

Matching by address

skip compare The attack skip compare of Celtic described in section
3.3 corresponds to the attack described in 4.2.2 case 1 of Efs.

Both attacks consequence is that the Z flag is in a state that makes the next
beq instruction branch in the unexpected conditional statement part.

skip return The attack skip return of Celtic described in section 3.5
corresponds to the attacks described in 4.2.2 case 2 and in 4.2.2 case 3 of Efs.

Both attacks avoid the execution of the POP {r4-r6,pc} at the end of the
verifyPIN function. This attack results in forcing the execution of the condi-
tional statement in verifyPIN function which allows the authentication.

The attack is the same on byteArrayCompare function.

Other results The other faults founds by Celtic are not matched by
single fault attacks of Efs with the simple fault model of PC ← PC + 2.

21

	Attacks found on VerifyPIN (version 2_HB+FTL_auth)
	Results for Lazart
	1-fault attacks
	First attack: changing the returned value of byteArrayCompare
	Second attack: ignore the returned value of byteArrayCompare

	2-faults attack
	4-faults attack

	Results for Celtic
	Assembly listings
	Results
	Attack skip_compare
	Attack skip_branch
	Attack skip_return
	Attack skip_loop
	Attack jump_in_auth

	Results for EFS
	Assembly listings
	Fault model: simple fault with PC modification
	Counter-measure triggered
	Successful authentication and PTC set to nasm|0x03|
	Authentication flag set to nasm|0x58|
	PTC set to nasm|0x03|
	PTC set to nasm|0x54|

	Results comparison with other tools
	Comparison with Lazart
	Comparison with Celtic

