

Bridging the Gap between RTL and Software Fault

Injection: a Methodology for Accurate Fault Modeling

Johan Laurent1, Vincent Beroulle1, Christophe

Deleuze1, Florian Pebay-Peyroula2

1

This work was funded thanks to the French national program 'programme
d’Investissements d’Avenir, IRT Nanoelec' ANR-10-AIRT-05

1 Univ. Grenoble Alpes, Grenoble INP, LCIS
26000 Valence, France
firstname.lastname@lcis.grenoble-inp.fr

2 Univ. Grenoble Alpes, CEA, LETI
38000 Grenoble, France
firstname.lastname@cea.fr

Journée thématique sur les Attaques par
Injection de Fautes

September 24th 2020

Summary

 I. Introduction

 II. Fault injection approach

1 - Overview

2 - Characterization programs

3 - RTL fault injection

4 - Software fault injection

 III. Cross-layer analyses

1 - Inputs

2 - Coverage metric

3 - Uncovered flip-flops

4 - Fidelity metric

5 - Model profiles

 IV. Conclusion & perspectives

2

I. Introduction

3

 Hardware fault injection can be countered at the hardware level,

but also at the software level

 Software analyses are based on software fault models (defined by

the Joint Interpretation Library for example [1])

– Instruction skip [2]

– Control-flow corruption (test inversion, …) [3][4]

– Register/memory corruptions [5][6]

 Problem: There are fault effects that are not modelled in typical

software fault models [7]

 These effects arise from the complexity of processor

microarchitecture

I. Introduction

 Software fault modeling usually consider the processor as a

black-box [8, 9, 10] and perform physical injections

 Realistic, but can only infer what happens in the processor from visible results

 We consider the RTL description of the processor available

and we perform RTL injections in simulation

 Need to rely on a hardware fault model, but better understanding of the faulty

behaviors, earlier in the design flow

 Effects obtained in RTL simulation in a LowRISC processor

[11]:

– Replace an argument by the last computed value

– Make an instruction “transient”

– Commit a speculated instruction

– …

4

I. Introduction

5

 Our goal is to precisely model RTL faults at the software

level, and evaluate these models.

 We approach security in a global way: hardware & software

 We want to define cross-layer analyses.

RTL effects
(reference)

Effects
predicted by

software fault
models

1 2

3

 Principle: Precisely comparing results of

RTL injections (reference) and software

injections.

II. Fault injection approach

1 - Overview

6

Reference injections

3. RTL
injections

5. SW
injections

4. Software
Fault Models

1.
Characterization

Programs

6. Analysis
and Metrics

2. Target flip-
flop(s)

II. Fault injection approach

1 - Overview

 Injections and observations are performed under the same

circumstances for both abstraction levels

 Some structures are visible from both abstraction levels

(register-file, memory) ; others, hidden registers, are only

seen at the hardware level.

 Observation:

– Register-file

– Memory

7

II. Fault injection approach

2 – Characterization programs

 Fault effects can vary depending on the precise

instruction sequence  Small assembly contexts

that represent various situations:

8

Prologue_instruction_1
Prologue_instruction_2
Target_instruction // Injection + Observation immediate effects
Epilogue_instruction_1
Epilogue_instruction_2
Epilogue_instruction_3 // Observation propagation effects

II. Fault injection approach

3 – RTL fault injection

 Bit-flips injected through simulator commands (mostly

single-bit, but also some multiple-bit injections)

 RISC-V LowRisc v0.4 processor (5-stage pipeline)

 Pipelined execution  exact injection instant depends

on which flip-flop is faulted

9

II. Fault injection approach

4 – Software fault injection

 Software fault injection through a program mutation

tool.

 Constraints:

– Precise modeling  takes the binary as input to execute the

exact same thing in hardware and software and to eliminate

compiler influence

– Effects are varied  need flexibility

– Need to represent information not available at the binary level

(like the value of some hidden registers)  representation of

the execution at a higher level (in our case, we chose C)

10

11

II. Fault injection approach

4 – Software fault injection

Mutation tool

Mutant: binary (extended) with
faulty behavior

Software fault model Executable file

12

II. Fault injection approach

4 – Software fault injection

Mutation tool

Software fault model
[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

13

II. Fault injection approach

4 – Software fault injection

Mutation tool

Software fault model

l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 res = arg1 + arg2; // Execute

 reg[15]=res; // Write-Back

1

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

14

II. Fault injection approach

4 – Software fault injection

Mutation tool

Software fault model

l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 if(injection) arg1=fwd;

 res = arg1 + arg2; // Execute

 fwd=res;

 reg[15]=res; // Write-Back

2

III. Cross-layer analyses

1 - Inputs

15

Reference injections

3. RTL
injections

5. SW
injections

4. Software
Fault Models

1.
Characterization

Programs

6. Analysis
and Metrics

2. Target flip-
flop(s)

III. Cross-layer analyses

1 - Inputs

 Characterization programs:

– 105 small assembly contexts

– VerifyPIN [12] version 6

– LittleXorkey

 Target flip-flops:

– All flip-flops from the last three pipeline stages. Total: 1308 flip-flops.

Excludes the register-file and memory.

 Software fault models: 49 models built mainly to cover single-

bit injections

– 32 simple bit-flips in the result of the instruction

– 6 typical (skip, test inversion…)

– 11 non-typical (related to forwarding for example)

16

III. Cross-layer analyses

2 - Coverage metric

 Among the RTL faults, what proportion are

correctly predicted by software fault models ?

 𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆 =
𝒂𝒓𝒆𝒂 𝟑

𝒂𝒓𝒆𝒂 𝟏 + 𝒂𝒓𝒆𝒂 𝟑

17

RTL visible
effects

(reference)

Visible effects
predicted by

software fault
models

1 2

3

III. Cross-layer analyses

2 - Coverage metric

 Results – exhaustive single-bit campaigns

 Results – statistical multiple-bit campaigns on asm contexts

18

 Silent Exception Unknown Analyzable Coverage

Assembly contexts 80.6% 3.3% 0.6% 15.4% 24.0%

VerifyPIN 65.5% 2.3% 22.4% 9.8% 28.7%

LittleXorKey 76.6% 2.7% 2.8% 17.9% 29.0%

 Silent Exception Unknown Analyzable Coverage

1-bit 80.6% 3.3% 0.6% 15.4% 24.04%

2-bit 66.2 ± 0.3% 6.4 ± 0.2% 1.2 ± 0.1% 26.1 ± 0.3% ~ 22.51%

3-bit 54.8 ± 0.4% 9.4 ± 0.2% 1.7 ± 0.1% 34.0 ± 0.3% ~ 20.21%

4-bit 46.6 ± 0.5% 12.0 ± 0.3% 2.3 ± 0.2% 39.2 ± 0.5% ~ 18.41%

5-bit 40.0 ± 0.5% 14.4 ± 0.4% 2.5 ± 0.2% 43.1 ± 0.5% ~ 17.68%

III. Cross-layer analyses

2 - Coverage metric

 Low coverage shows the difficulty to model faults.

 Reasons to explain this low coverage:

– Injection in many hidden registers

– Strict comparisons (without considering the instantaneous

effect, coverages increase to 24.7%, 44,2% and 49,4%)

 Among the best models:

– Extended instruction skip (a little bit better than typical

instruction skip)

19

III. Cross-layer analyses

3 – Uncovered flip-flops

 Flip-flops creating the most faulty behaviors

20

0

10

20

30

40

50

60

70

80

90

100

Fautes
couvertes

Fautes non
couvertes

III. Cross-layer analyses

4 – Fidelity metric

 Among software faults, what proportion correctly

predicts actual RTL faults ?

 𝑭𝒊𝒅𝒆𝒍𝒊𝒕𝒚 =
𝒂𝒓𝒆𝒂 𝟑

𝒂𝒓𝒆𝒂 𝟐 + 𝒂𝒓𝒆𝒂 𝟑

21

RTL visible
effects

(reference)

Visible effects
predicted by

software fault
models

1 2

3

III. Cross-layer analyses

4 – Fidelity metric

 Globally, fidelity = 76.5%

 Very good models: replacing an argument or the

result of an operation by 0 ~100%

 Good models: instruction skip ~80%

 Bad models: two models have a fidelity of 60.7%

and 41.4%. They could be enhanced.

22

III. Cross-layer analyses

5 – Model profiles

 How to reproduce in an RTL simulation behaviors

predicted by a software fault model?

 Model profiles show the most likely flip-flops to

target.

23

0 50 100 150 200

ex_ctrl_wxd

ex_reg_valid

ex_ctrl_tagw

mem_reg_valid

mem_ctrl_wxd

wb_ctrl_wxd

wb_reg_valid

ex_ctrl_div

ex_ctrl_sel_alu1…

ex_ctrl_sel_alu1…

bypass_rd_mux…

wb_reg_replay

Number of times a flip-flop produces the
same effect as the skip fault model.

0 20 40 60 80

ex_ctrl_sel_alu2[1]
ex_reg_rs_msb_0[3]

bypass_rd_mux_reg_1[2]
ex_reg_rs_lsb_1[0]

ex_reg_inst[22]
ex_reg_rs_lsb_0[0]
ex_ctrl_sel_imm[0]

bypass_rd_mux_reg_2[2]
ex_reg_rs_msb_1[0]

ex_ctrl_sel_imm[2]
ex_reg_rs_msb_0[0]

ex_reg_rs_lsb_0[1]

Number of times a flip-flop produces the
same effect as the arg2_4 fault model.

IV. Conclusion

 Presented a cross-layer approach to study fault

injection, based on precise comparisons between

RTL and software injections

 Multiple analyses to think security globally

hardware + software

 Perspective: using other hardware fault models

(considering limited attacker power)

24

Thanks for your attention !

Questions ?

References

[1] Joint Interpretation Library, “Application of Attack Potential to Smartcards.” Jan-2013.

[2] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal verification of a software countermeasure against

instruction skip attacks,” presented at the PROOFS 2013, 2013.

[3] M. L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A Symbolic Approach for Evaluation the Robustness of

Secured Codes against Control Flow Injections,” in Verification and Validation 2014 IEEE Seventh International

Conference on Software Testing, 2014, pp. 213–222.

[4] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, “Random Additive Signature Monitoring for Control Flow

Error Detection,” IEEE Trans. Reliab., vol. 66, no. 4, pp. 1178–1192, Dec. 2017.

[5] M. Christofi, B. Chetali, L. Goubin, and D. Vigilant, “Formal verification of an implementation of CRT-RSA algorithm,”

presented at the Security Proofs for Embedded Systems (PROOFS), 2012, pp. 28–48.

[6] A. Höller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, “QEMUBased Fault Injection for a System-Level Analysis of

Software Countermeasures Against Fault Attacks,” in 2015 Euromicro Conference on Digital System Design, 2015, pp.

530–533.

[7] H. Cho, S. Mirkhani, C. Y. Cher, J. A. Abraham, and S. Mitra, “Quantitative evaluation of soft error injection techniques

for robust system design,” in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), 2013, pp. 1–10.

[8] M. S. Kelly, K. Mayes, and J. F. Walker. 2017. Characterising a CPU fault attack model via run-time data analysis. In

2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 79–84.

DOI:https://doi.org/10.1109/HST.2017.7951802

[9] Louis Dureuil. 2016. Analyse de code et processus d’évaluation des composants sécurisés contre l’injection de faute.

phdthesis. Communauté Université Grenoble Alpes. Retrieved October 16, 2017 from https://tel.archives-ouvertes.fr/tel-

01403749/document

[10] Julien Proy, Karine Heydemann, Fabien Majéric, Albert Cohen, and Alexandre Berzati. 2019. Studying EM Pulse

Effects on Superscalar Microarchitectures at ISA Level. arXiv:1903.02623 [cs] (March 2019). Retrieved March 12, 2019

from http://arxiv.org/abs/1903.02623

[11] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A. Papadimitriou, “Cross-layer analysis of software fault

models and countermeasures against hardware fault attacks in a RISC-V processor,” Microprocessors and Microsystems,

vol. 71, p. 102862, Nov. 2019, doi: 10.1016/j.micpro.2019.102862.

[12] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. de Choudens, “FISSC: A Fault Injection and Simulation

Secure Collection,” 2016, pp. 3–11.

27

Skip/skip_mem/skip_wb 1-bit 2-bit 3-bit 4-bit 5-bit

Assembly contexts 2.8/3.3/3.3 2.9/3.6/3.5 3.1/3.6/3.5 3.0/3.5/3.4 3.2/4.2/4.0

VerifyPIN 8.0/8.6/8.4 8.2/8.7/8.5 8.1/8.8/8.5 8.5/9.1/8.8 8.3/8.8/8.5

LittleXorKey 3.2/3.5/4.2 3.0/3.4/4.5 3.0/3.3/4.1 2.9/3.2/4.0 2.7/3.0/3.9

 Coverage of the instruction skip model, and of 2

more advanced skip models for various injection

campaigns

