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I. Introduction 
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 Hardware fault injection can be countered at the hardware level, 

but also at the software level 

 

 Software analyses are based on software fault models (defined by 

the Joint Interpretation Library for example [1]) 

– Instruction skip [2] 

– Control-flow corruption (test inversion, …) [3][4] 

– Register/memory corruptions [5][6] 

 

 Problem: There are fault effects that are not modelled in typical 

software fault models [7] 

 

 These effects arise from the complexity of processor 

microarchitecture 

 

 

 
 

 



 
   

I. Introduction 

 Software fault modeling usually consider the processor as a 

black-box [8, 9, 10] and perform physical injections 

 Realistic, but can only infer what happens in the processor from visible results 

 

 We consider the RTL description of the processor available 

and we perform RTL injections in simulation  

 Need to rely on a hardware fault model, but better understanding of the faulty 

behaviors, earlier in the design flow 

 

 Effects obtained in RTL simulation in a LowRISC processor 

[11]: 

– Replace an argument by the last computed value  

– Make an instruction “transient” 

– Commit a speculated instruction 

– … 

4 



 
   

I. Introduction 
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 Our goal is to precisely model RTL faults at the software 

level, and evaluate these models.  

 

 

 

 

 

 

 

 

 We approach security in a global way: hardware & software  

 We want to define cross-layer analyses.  

RTL effects 
(reference) 

Effects 
predicted by 

software fault 
models 

1 2 
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 Principle: Precisely comparing results of 

RTL injections (reference) and software 

injections. 

 

II. Fault injection approach 

1 - Overview 
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II. Fault injection approach 

1 - Overview 

 Injections and observations are performed under the same 

circumstances for both abstraction levels 

 

 Some structures are visible from both abstraction levels 

(register-file, memory) ; others, hidden registers, are only 

seen at the hardware level. 

 

 Observation: 

– Register-file 

– Memory 
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II. Fault injection approach 

2 – Characterization programs 

 Fault effects can vary depending on the precise 

instruction sequence  Small assembly contexts 

that represent various situations: 
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Prologue_instruction_1 
Prologue_instruction_2 
Target_instruction                // Injection + Observation immediate effects 
Epilogue_instruction_1 
Epilogue_instruction_2 
Epilogue_instruction_3 // Observation propagation effects 



 
   

II. Fault injection approach 

3 – RTL fault injection 

 Bit-flips injected through simulator commands (mostly 

single-bit, but also some multiple-bit injections) 

 

 RISC-V LowRisc v0.4 processor (5-stage pipeline) 

 

 Pipelined execution  exact injection instant depends 

on which flip-flop is faulted 
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II. Fault injection approach 

4 – Software fault injection 

 Software fault injection through a program mutation 

tool. 

 

 Constraints: 

– Precise modeling  takes the binary as input to execute the 

exact same thing in hardware and software and to eliminate 

compiler influence 

– Effects are varied  need flexibility 

– Need to represent information not available at the binary level 

(like the value of some hidden registers)  representation of 

the execution at a higher level (in our case, we chose C) 

10 



 
   

11 

II. Fault injection approach 

4 – Software fault injection 

Mutation tool 

Mutant: binary (extended) with 
faulty behavior 

Software fault model Executable file  
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II. Fault injection approach 

4 – Software fault injection 

Mutation tool 

Software fault model 
[…] 

 0x06ac:    ADDI  x15 = x0 + 85 

[…] 



 
   

[…] 

 0x06ac:    ADDI  x15 = x0 + 85 

[…] 
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II. Fault injection approach 

4 – Software fault injection 

Mutation tool 

Software fault model 

l06ac: // ADDI x15, x0, 85 

   arg1 = reg[0];  arg2 = 85;     // Decode 

 

   res = arg1 + arg2;     // Execute 

 

   reg[15]=res;  // Write-Back 
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[…] 

 0x06ac:    ADDI  x15 = x0 + 85 

[…] 

14 

II. Fault injection approach 

4 – Software fault injection 

Mutation tool 

Software fault model 

l06ac: // ADDI x15, x0, 85 

   arg1 = reg[0];  arg2 = 85;     // Decode 

   if(injection)  arg1=fwd; 

   res = arg1 + arg2;     // Execute 

   fwd=res; 

   reg[15]=res;  // Write-Back 
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III. Cross-layer analyses 

1 - Inputs 
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III. Cross-layer analyses 

1 - Inputs 

 Characterization programs:  

– 105 small assembly contexts 

– VerifyPIN [12] version 6 

– LittleXorkey 

 

 Target flip-flops:  

– All flip-flops from the last three pipeline stages. Total: 1308 flip-flops. 

Excludes the register-file and memory. 

 

 Software fault models: 49 models built mainly to cover single-

bit injections 

– 32 simple bit-flips in the result of the instruction 

– 6 typical (skip, test inversion…) 

– 11 non-typical (related to forwarding for example) 
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III. Cross-layer analyses 

2 - Coverage metric 

 Among the RTL faults, what proportion are 

correctly predicted by software fault models ? 

 𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆 =  
𝒂𝒓𝒆𝒂 𝟑

𝒂𝒓𝒆𝒂 𝟏  + 𝒂𝒓𝒆𝒂 𝟑
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III. Cross-layer analyses 

2 - Coverage metric 

 Results – exhaustive single-bit campaigns 

 

 

 

 

 Results – statistical multiple-bit campaigns on asm contexts 
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  Silent Exception Unknown Analyzable Coverage 

Assembly contexts 80.6% 3.3% 0.6% 15.4% 24.0% 

VerifyPIN 65.5% 2.3% 22.4% 9.8% 28.7% 

LittleXorKey 76.6% 2.7% 2.8% 17.9% 29.0% 

  Silent Exception Unknown Analyzable Coverage 

1-bit 80.6% 3.3% 0.6% 15.4%    24.04% 

2-bit 66.2 ± 0.3% 6.4 ± 0.2% 1.2 ± 0.1% 26.1 ± 0.3% ~ 22.51% 

3-bit 54.8 ± 0.4% 9.4 ± 0.2% 1.7 ± 0.1% 34.0 ± 0.3% ~ 20.21% 

4-bit 46.6 ± 0.5% 12.0 ± 0.3% 2.3 ± 0.2% 39.2 ± 0.5% ~ 18.41% 

5-bit 40.0 ± 0.5% 14.4 ± 0.4% 2.5 ± 0.2% 43.1 ± 0.5% ~ 17.68% 



 
   

III. Cross-layer analyses 

2 - Coverage metric 

 Low coverage shows the difficulty to model faults. 

 Reasons to explain this low coverage:  

– Injection in many hidden registers 

– Strict comparisons (without considering the instantaneous 

effect, coverages increase to 24.7%, 44,2% and 49,4%) 

 

  Among the best models:  

– Extended instruction skip (a little bit better than typical 

instruction skip) 
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III. Cross-layer analyses 

3 – Uncovered flip-flops 

 Flip-flops creating the most faulty behaviors 
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III. Cross-layer analyses 

4 – Fidelity metric 

 Among software faults, what proportion correctly 

predicts actual RTL faults ? 

 𝑭𝒊𝒅𝒆𝒍𝒊𝒕𝒚 =  
𝒂𝒓𝒆𝒂 𝟑

𝒂𝒓𝒆𝒂 𝟐  + 𝒂𝒓𝒆𝒂 𝟑
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III. Cross-layer analyses 

4 – Fidelity metric 

 Globally, fidelity = 76.5% 

 

 Very good models: replacing an argument or the 

result of an operation by 0       ~100% 

 

 Good models: instruction skip   ~80% 

 

 Bad models: two models have a fidelity of 60.7% 

and 41.4%. They could be enhanced. 
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III. Cross-layer analyses 

5 – Model profiles 

 How to reproduce in an RTL simulation behaviors 

predicted by a software fault model? 

 Model profiles show the most likely flip-flops to 

target. 
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IV. Conclusion 

 Presented a cross-layer approach to study fault 

injection, based on precise comparisons between 

RTL and software injections 

 Multiple analyses to think security globally 

hardware + software 
 

 Perspective: using other hardware fault models 

(considering limited attacker power) 
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Thanks for your attention ! 

 

Questions ? 
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Skip/skip_mem/skip_wb 1-bit 2-bit 3-bit 4-bit 5-bit 

Assembly contexts 2.8/3.3/3.3 2.9/3.6/3.5 3.1/3.6/3.5 3.0/3.5/3.4 3.2/4.2/4.0 

VerifyPIN 8.0/8.6/8.4 8.2/8.7/8.5 8.1/8.8/8.5 8.5/9.1/8.8 8.3/8.8/8.5 

LittleXorKey 3.2/3.5/4.2 3.0/3.4/4.5 3.0/3.3/4.1 2.9/3.2/4.0 2.7/3.0/3.9 

 Coverage of the instruction skip model, and of 2 

more advanced skip models for various injection 

campaigns 


