Secure Delivery of Program Properties through

Optimizing Compilation

Son Tuan Vu Karine Heydemann
Sorbonne Université
Laboratoire d'Informatique de Paris 6

Arnaud de Grandmaison
Arm

Albert Cohen
Google

24 September 2020

1/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

secret _key © m secret_key © m

PBe—m PBe—n

secret _key (leaked) secret_key ® m @ n

PBe——n PBe—m

secret _key © n secret_key ® n

2/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between
@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)
@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
int n = rand();

*mk = (xmk ~ n) ~ m;

2/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

secret _key © m

void compute(int *n‘{k, int m) {

1nt n=rand(); «~----"""="-1

*xmk = ((xmk ~ n),~ m;

De-masking of old mask m

Re-masking of secret
key with new mask n

2/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between
@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)
@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

Security property:
Re-masking before De-masking

void compute(int *mk, int m) {
1nt n=rand(); ~--====-=-=-=-1 - - De-masking of old mask m
v
k= (kA) <
} T)u‘_ ________________ | Re-masking of secret
key with new mask n

2/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

Evaluation reordering

void compute(int *mk, int m) {

iﬁ% n = rand();

void compute(int *mk, int m) {
int n = rand();

*mk = (xmk ©~ m) ~ n;

2/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

Property not respected

Evaluation reordering

void compute(int *mk, int m) {

iﬁ% n = rand();

void compute(int *mk, int m) {
int n = rand();

*mk = (xmk ©~ m) ~ n;

2/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between
@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)
@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {

int n = rand(); _ Use of temporary
- A . .
1nt‘tqp,fffmkiigm; €--------- ---- variable to fix
*mk = tmp! ~ m; evaluation order

2/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

Temporary variable optimized out
+

Evaluation reordering

void compute(int *mk, int m) {

int n = rand();
int {tmp = *mk ~ nj

*mk = tmp/ ~ m;

void compute(int *mk, int m) {
int n = rand();

*mk = xmk ~ m * n;

2/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between

@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)

@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

Property not respected

Temporary variable optimized out
+

Evaluation reordering

void compute(int *mk, int m) {

int n = rand();
int {tmp = *mk ~ nj

*mk = tmp/ ~ m;

void compute(int *mk, int m) {
int n = rand();

*mk = xmk ~ m * n;

2/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between
@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)
@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)
Coding trick: volatile + asm

void compute(int *mk, int m) { void compute(int *mk, int m) {

int n = rand(); _

int n = rand(); _
int {tmp = *mk ~ nj} volatile int {tmp = *mk ~ nj
t __asm__ __volatile _

*mk = tmp/ ~ m;
("":::"memory");
*mk = tmp) ~ m;

2/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between
@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)
@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)
Coding trick: volatile + asm

Fragile and not portable:
volatile int may be ignored

void compute(int *mk, int m) { void compute(int *mk, int m) {

int n = rand(); _

int n = rand(); _
int {tmp = *mk ~ nj} volatile int {tmp = *mk ~ nj
t __asm__ __volatile _

*mk = tmp/ ~ m;
("":::"memory");
*mk = tmp) ~ m;

2/25

Background and Motivation: WYSINWYX phenomenon

@ Assuming a functionally-correct, well-defined program

@ Mismatch between
@ Behavior intended by the programmer (source code)
@ What is actually executed by the processor (machine code)
@ Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {

int n = rand(); How to reliably prevent the compiler
int f1£mp7 =*mk ~ n; €--------- --- from optimizing out tmp thus
*mk = Ttmp/‘ ~m; respect the evaluation order?

2/25

Background and Motivation: WYSINWYX phenomenon

o Needs for analysis and verification of binary programs [Balakrishnan
and Reps, 2010] [Bréjon et al., 2019]

@ Needs for program properties in the executable binaries (e.g.
countermeasure oracles, ...) [Bréjon et al., 2019]

3/25

Background and Motivation: WYSINWYX phenomenon

o Needs for analysis and verification of binary programs [Balakrishnan
and Reps, 2010] [Bréjon et al., 2019]

@ Needs for program properties in the executable binaries (e.g.
countermeasure oracles, ...) [Bréjon et al., 2019]

= Needs for preserving program properties throughout the optimizing
compilation flow

3/25

Property Preservation Through Compilation: Outline

@ Definition of property preservation through compilation

@ Our approach to preserve program properties

© Implementation of our approach in LLVM

@ Validation of our approach and implementation on security applications

4/25

Functional Property

A functional property (Prop, ObsPt) is
@ Prop a propositional logic formula expressing a program behavioral property

@ ObsPt an observation point at which Prop is expected to hold

5/25

Functional Property

A functional property (Prop, ObsPt) is
@ Prop a propositional logic formula expressing a program behavioral property

@ ObsPt an observation point at which Prop is expected to hold

void compute(int xmk, int m) {

int tmp = *mk ~ n;

‘here: PROP(tmp == *mk ~ n)

Implicitly equivalent to
"Re-masking before De-masking"

5/25

Functional Property

A functional property (Prop, ObsPt) is
@ Prop a propositional logic formula expressing a program behavioral property

@ ObsPt an observation point at which Prop is expected to hold

void compute(int xmk, int m) {

int tmp = *mk *~ n;

ObsPt <-|--ihere:) PROP(tmp == *mk ~ n)

5/25

Functional Property

A functional property (Prop, ObsPt) is
@ Prop a propositional logic formula expressing a program behavioral property

@ ObsPt an observation point at which Prop is expected to hold

void compute(int xmk, int m) {

int tmp = *mk ~ n;

ObsPt <-|--ihere:) PROP(tmp == *mk ~ n) -4--> Prop

5/25

Functional Property and Partial State

A functional property (Prop, ObsPt) defines a partial state (ObsPt, ObsVar, ObsMem):
@ ObsPt the observation point defined by the property

void compute(int xmk, int m) {

int tmp = xmk ~ n;

ObsPt <1t --here: PROP(tmp == *mk ~ n)

5/25

Functional Property and Partial State

A functional property (Prop, ObsPt) defines a partial state (ObsPt, ObsVar, ObsMem):
@ ObsPt the observation point defined by the property

@ ObsVar = {(var, val) | var observed variable occurring in Prop}

void compute(int xmk, int m) {

;n;iymp *mk "~

ObsPt </ --+here: ‘PROP(tmp == *mk A‘n)

~

*mk = tmp * S.. AN
cee RN ,\ ObsVar:
} {(tmp, 4860); (n, 5678)}

5/25

Functional Property and Partial State

A functional property (Prop, ObsPt) defines a partial state (ObsPt, ObsVar, ObsMem):
@ ObsPt the observation point defined by the property
@ ObsVar = {(var, val) | var observed variable occurring in Prop}

@ ObsMem = {(mem, val) | mem observed memory location occurring in Prop}

void compute(int *mk, int m) {| ObsMem:
o7 {(mk, 1234)}

-

1nt tmp *mk "

ObsPt <! --here:) PROP(tmp == *mk ~ ‘n)

~

*mk = tmp * S.. AN
cee RN ,\ ObsVar:
} {(tmp, 4860); (n, 5678)}

5/25

Functional Property and Partial State

A functional property (Prop, ObsPt) defines a partial state (ObsPt, ObsVar, ObsMem):
@ ObsPt the observation point defined by the property
@ ObsVar = {(var, val) | var observed variable occurring in Prop}

@ ObsMem = {(mem, val) | mem observed memory location occurring in Prop}

void compute(int *mk, int m) {| ObsMem:
7 {(mk, 1234)}
17n7t7 jcmp *mk ~ n; e
ObsPt <! --here:) PROP(tmp == *mk ~ ‘n)
*mk = tmp * "‘\\ N
cee) "\,\ ObsVar:
} {(tmp, 4860); (n, 5678)}

Partial State:
(ObsPt, ObsVar, ObsMem)

5/25

Observation trace

An observation trace is
@ the sequence of partial states defined by functional properties

@ encountered during a given execution of the program

int main() {------ [> Observation trace:
compute(mkl, ml); @here: (tmp, 4860); (mk, 5678); (n, 1234)
compute(mk2, m2); @here: (tmp, 5171); (mk, 1234); (n, 4321)
compute(mk3, m3); @here: (tmp, 1029); (mk, 2187); (n, 3214)
)

5/25

Functional Property Preservation

A transformation 7() preserves functional properties of program P if
@ P and 7(P) produce equal observation traces given the same input

@ for any input vector

Source
Program

5/25

Functional Property Preservation

A transformation 7() preserves functional properties of program P if
@ P and 7(P) produce equal observation traces given the same input

@ for any input vector

Observation trace:

Source. @here: (tmp, 4860); (mk, 5678); (n, 1234)

Program @here: (tmp, 5171); (mk, 1234); (n, 4321)
@here: (tmp, 1029); (mk, 2187); (n, 3214)

5/25

Functional Property Preservation

A transformation 7() preserves functional properties of program P if
@ P and 7(P) produce equal observation traces given the same input

@ for any input vector

Observation trace:

Source. @here: (tmp, 4860); (mk, 5678); (n, 1234)

Program @here: (tmp, 5171); (mk, 1234); (n, 4321)
@here: (tmp, 1029); (mk, 2187); (n, 3214)

Property-preserving
compilation

b 4
Binary
Program

5/25

Functional Property Preservation

A transformation 7() preserves functional properties of program P if
@ P and 7(P) produce equal observation traces given the same input

@ for any input vector

Observation trace:

Source. @here: (tmp, 4860); (mk, 5678); (n, 1234)

Program @here: (tmp, 5171); (mk, 1234); (n, 4321)
@here: (tmp, 1029); (mk, 2187); (n, 3214)

Property-preserving

compilation ; .
P Ix = location of x (register or memory address)

Observation trace:

h 4

Binary ©0xB0000000: (femp, 4860); (I, 5678); (I, 1234)
Program ©0x80000000: (/imp, 5171): (g, 1234); (I, 4321)

©0x80000000: (/emp, 1029); (i, 2187); (I, 3214)

5/25

Functional Property Preservation

A transformation 7() preserves functional properties of program P if
@ P and 7(P) produce equal observation traces given the same input

@ for any input vector

Observation trace:

Source. @here: (tmp, 4860); (mk, 5678); (n, 1234)

Program @here: (tmp, 5171); (mk, 1234); (n, 4321)
@here: (tmp, 1029); (mk, 2187); (n, 3214)

Property-preserving

compilation = (for any input vector)

Observation trace:

h 4

Binary ©0xB0000000: (femp, 4860); (I, 5678); (I, 1234)
Program ©0x80000000: (/imp, 5171): (g, 1234); (I, 4321)

©0x80000000: (/emp, 1029); (i, 2187); (I, 3214)

5/25

Preserving Properties Through Compilation: Overview

—
Source code [--->

Compiler

S—
____)

6/25

Preserving Properties Through Compilation: Overview
S —

Source code [--->

Property-preserving Compiler

- -->| Binary code

6/25

Preserving Properties Through Compilation: Overview
S —

Source code |- - - >| Property-preserving Compiler

- -->| Binary code

e Existing work: tuning optimization passes one-by-one to teach them
about properties [Zarzani, 2013] [Namjoshi and Zuck, 2013]

[Namjoshi, Tagliabue, and Zuck, 2013]

6/25

Preserving Properties Through Compilation: Overview
S —

Source code |- - - >| Property-preserving Compiler

- -->| Binary code

e Existing work: tuning optimization passes one-by-one to teach them
about properties [Zarzani, 2013] [Namjoshi and Zuck, 2013]

[Namjoshi, Tagliabue, and Zuck, 2013]

@ Our approach: more generic solution which does not require modifying

existing optimizations

6/25

Preserving Properties Through Compilation: Overview
S —

Source code |- - - >| Property-preserving Compiler

- -->| Binary code

e Existing work: tuning optimization passes one-by-one to teach them
about properties [Zarzani, 2013] [Namjoshi and Zuck, 2013]

[Namjoshi, Tagliabue, and Zuck, 2013]

@ Our approach: more generic solution which does not require modifying

existing optimizations

= can be implemented in a production compiler (LLVM)

6/25

Property Preservation Through Compilation: Outline

@ Definition of property preservation through compilation

@ Our approach to preserve program properties

© Implementation of our approach in LLVM

@ Validation of our approach and implementation on security applications

7/25

Preserving Properties Through Compilation: Our Approach

@ Preserving Property = Preserving Partial State

void compute(int *mk, int m) {
intn=20; // defl

ﬁ.; rand(); // def 2

8/25

Preserving Properties Through Compilation: Our Approach

@ Preserving Property = Preserving Partial State

@ Preserving Partial State = Preserving

void compute(int *mk, int m) {
intn=20; // defl

ﬁ.; rand(); // def 2

8/25

Preserving Properties Through Compilation: Our Approach

@ Preserving Property = Preserving Partial State

@ Preserving Partial State = Preserving

void compute(int *mk, int m) {

int n = 0; def 1
/7 s locations + values of observed variables
e ,
n = rand(); // def 2 ,
int tmp = xmk ~ n; K
there: PROP(tmp == *mk ”~ n);% - - locations + values of observed memory locations
*mk = tmp ~ m;

8/25

Preserving Properties Thro

ugh Compilation: Our Approach

@ Preserving Property = Preserving Partial State

@ Preserving Partial State = Preserving

void compute(int *mk, int m) {
intn=20; // defl

n = rand(); // def 2 ,
int tmp = *mk ~ n; ’
‘here: PROP(tmp == *mk ~ n)) -
xmk = tmp ~ ' m; \

s locations + values of observed variables
’

- locations + values of observed memory locations

*, an equivalent observation point (w.r.t. the
observed entities)

8/25

Preserving Properties Through Compilation: Our Approach

void compute(int *mk, int m) {
intn=20; // defl

ﬁ.; rand(); // def 2
int tmp = *mk *~ n;

IR level

entry:
%Nl = 0 ;SSA def 1

%n2 = call rand() ;SSA def 2
%mkl = load %mk.addr
%tmpl = xor %mkl, %n2

%mk2 = xor S%tmpl, %ml

%n3 = 42 ;SSA def 3

8/25

Preserving Properties Through Compilation: Our Approach

Preserve observed memory
locations

memory-barrier, side-effecting: _|_

cannot be removed

entry:
%Nl = 0 ;SSA def 1
%n2 = call rand()

%mkl = load %mk.addr
%tmpl = xor %mkl, %n2

%n3 = 42 ;SSA def 3

;SSA def 2

)! ;tmp == *mk”n

9/25

Preserving Properties Through Compilation: Our Approach

SSA variables
to be preserved

entry:
%snl

0 ;SSA def 1

%n2 = call rand() ;SSA def 2

%mkl = load %mk.addr
%tmpl = xor %mkl, %n2

call obs.pt(%n2 , %tmpl) ;tmp

%mk2 = xor S%tmpl, S%ml

%n3 = 42 ;SSA def 3

Preserving Properties Through Compilation: Our Approach

entry:
%nl = 0 ;SSA def 1

%n2 = call rand() ;SSA def 2

%mkl = load %mk.addr

%tmpl = xor %mkl, %n20,

call obs.pt(%n20, %tmpl) ;tmp == *mk™n
%mk2 = xor S%tmpl, S%ml

%n3 = 42 ;SSA def 3

9/25

Preserving Properties Through Compilation: Our Approach

entry:
%nl = 0 ;SSA def 1

%n2 = call rand() ;SSA def 2

%n20 = call artificial.def(%n2)
%mkl = load %mk.addr

%tmpl = xor %mkl, %n20 ________ -
%tmpl0 = call artificial.def(%tmpl)

I
‘call obs.pt(%n20, &tmpl@) ;tmp == +mk™n

%n3 = 42 ;SSA def 3

9/25

Preserving Properties Through Compilation: Our Approach

opaque, side-effecting:
cannot be analyzed or removed

’
&

/|

entry:
%nl = 0 ;SSA def 1

%n2 = call rand() ;SSA def 2

call obs.pt(%n20, %tmplQ) ;tmp ==
%mk2 = xor %tmplO, S%ml

%n3 = 42 ;SSA def 3

== xmk”™n

9/25

Preserving Properties Through Compilation: Our Approach

entry:
%nl = 0 ;SSA def 1

;ﬁé call rand() ;SSA def 2

must be kept through the ” %mkl load %mk.addr
whole compilation flow, S| %tmpl = xor %mkl, %n20
removed during code “z~>%tmpl® = call artificial.def (% stmpl)
emission: no interference "> call obs.pt(%n20, %tmpl@) ;tmp == *mk™n
with original program %mk2 = xor %tmplO, S%ml

%n3 = 42 ;SSA def 3

9/25

Property Preservation Through Compilation: Outline

@ Definition of property preservation through compilation

@ Our approach to preserve program properties

© Implementation of our approach in LLVM

@ Validation of our approach and implementation on security applications

10/25

Preserving Properties Through Compilation: LLVM flow

Source code [>

Front-end

obs.pt
insertion

artificial.def
insertion

Middle
end

obs.pt
lowering

artificial.def
lowering

Back-end

Property
emission

> | Binary code

11/25

Preserving Properties Through Compilation: LLVM flow

e —
*

GNU

annotation
attribute

Front-end

obs.pt
insertion

artificial.def
insertion

Middle
end

obs.pt
lowering

artificial.def
lowering

Back-end

Property
emission

S—
*

12/25

Property Preservation Through Compilation: Outline

@ Definition of property preservation through compilation

@ Our approach to preserve program properties

© Implementation of our approach in LLVM

@ Validation of our approach and implementation on security applications

13/25

Property Preservation Validation: Outline

@ General Validation Methodology

@ Validation on Functional Properties

© Validation on Security Properties

@ Performance Overhead Evaluation

14 /25

Experimental Validation Methodology

Property preservation = Equality of observation traces

15/25

Experimental Validation Methodology

Property preservation = Equality of observation traces

Source code

15/25

Experimental Validation Methodology

Property preservation = Equality of observation traces

Property-
preserving
LLVM 9.0

[+ annotation (property)

R —
Source code

l+ instrumentation (partial state logging)

LLVM 9.0

15/25

Experimental Validation Methodology

Property preservation = Equality of observation traces

S —
Property- | .01/2/3/s/z Binary
preserving >
LLVM 9.0

[+ annotation (property)

R —
Source code

l+ instrumentation (partial state logging)

S
Binary

-00
LLVM 9.0 >

15/25

Experimental Validation Methodology

Property preservation = Equality of observation traces

Property- | -01/2/3/s/z Binary

R property
preserving > :
LLVM 9.0 (debug |nfo)

[+ annotation (property)

R —
Source code

l+ instrumentation (partial state logging)

S
Binary

-00
LLVM 9.0 >

15/25

Experimental Validation Methodology

Property preservation = Equality of observation traces

Property- | -01/2/3/s/z Binary

R property
preserving > :
LLVM 9.0 (debug |nfo)

[+ annotation (property)

R —
Source code

l+ instrumentation (partial state logging)

Binary

.call printf

-00
LLVM 9.0 >

15/25

Experimental Validation Methodology

Property preservation = Equality of observation traces

- Binar
;Zzgitzg “01/2/3/5/2 properi/y gdb Observation
LLVM 9.0 (debug info) Trace

[+ annotation (property)

R —
Source code

l+ instrumentation (partial state logging)

Binary

.call printf

-00

LLVM 9.0 R execution | Reference

>

Trace

15/25

Experimental Validation Methodology

Property preservation = Equality of observation traces

- Binar
;Zzgitzg “01/2/3/5/2 properi/y gdb Observation
LLVM 9.0 (debug info) Trace

[+ annotation (property)

Source code P —

l+ instrumentation (partial state logging)

Binary

.call printf

-00

LLVM 9.0 R execution | Reference

Trace

15/25

Functional Validation

@ Goal: propagating functional properties used for program static
analysis from source to binary level

@ Programs from Framework for Modular Analysis of C programs
(Frama-C) test suite [Cuoq et al., 2012]

@ 558 functional properties (C boolean expressions), verifying expected
values of variables at a given program point

16 /25

Functional Validation

Property-
preserving
LLVM 9.0

-01/2/3/s/z

gdb

Observation
Trace

property
(debug info)

[+ annotation (property)

R —
Source code

l+ instrumentation (partial state logging)

LLVM 9.0

-00

>

execution | Reference

.call printf i Trace

16 /25

Functional Validation

Property-
preserving
LLVM 9.0

x86-64

-01/2/3/s/z gdb

Observation

property

Trace

(debug info)

[+ annotation (property)

R —
Source code

l+ instrumentation (partial state logging)

LLVM 9.0

00 x86-64

execution | Reference

>

Trace

.call printf

16 /25

Functional Validation

Property-
preserving
LLVM 9.0

x86-64

-01/2/3/s/z gdb

Observation

property

Trace

(debug info)

[+ annotation (property)

R —
Source code

l+ instrumentation (partial state logging)

LLVM 9.0

558 properties preserved i —

00 x86-64

execution | Reference

Trace

.call printf

16 /25

Application to Security Properties

Considered properties:

Attack

Protection

Property

17/25

Application to Security Properties

Considered properties:

Attack Side-channel
Masking of
secret data
Instruction
ordering in
masking
operations

Protection

Property

17/25

Application to Security Properties

Considered properties:

Attack Side-channel | Data remanence
. Masking of | Inserting code to
Protection
secret data erase secret data
Instruction Presence of
ordering in secret
Property '8
masking memory data
operations erasure

17/25

Application to Security Properties

Considered properties:

Attack Side-channel | Data remanence Fault injection
. Masking of | Inserting code to Inserting redundant data
Protection .
secret data | erase secret data and/or protection code
Instruction Presence of Interleaving of Presence of
ordering in secret functional and | redundant data
Property . . .
masking memory data protection code | detecting fault
operations erasure injections

17/25

Application to Security Properties

Considered properties:

Attack Side-channel | Data remanence Fault injection
. Masking of | Inserting code to Inserting redundant data
Protection .
secret data | erase secret data and/or protection code
Instruction Presence of Interleaving of Presence of
ordering in secret functional and | redundant data
Property . . .
masking memory data protection code | detecting fault
operations erasure injections

= these security properties are non-functional (refer to notions not clearly
defined in the source program semantics)

17/25

Application to Security Properties

Considered properties:

Attack Side-channel | Data remanence Fault injection
. Masking of | Inserting code to Inserting redundant data
Protection .
secret data | erase secret data and/or protection code
Instruction Presence of Interleaving of Presence of
ordering in secret functional and | redundant data
Property . . .
masking memory data protection code | detecting fault
operations erasure injections

= these security properties are non-functional (refer to notions not clearly
defined in the source program semantics)

= preserving source-level protections by forcibly observing its variables at

specific program points

17/25

Application to Security Properties

@ Defining new predicate observe(v) which includes v into the partial
state to be preserved

void compute(int *mk, int m) {
int n=20; // def 1

n = rand(); // def 2
int tmp = *mk ~ n;

‘here: PROP(observe(tmp))

18/25

Proper Interleaving of Functional code and Protection

A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

if (cond) {
stmtl

stmt2

19/25

Proper Interleaving of Functional code and Protection

A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

fJ..p;t ent_if = 05 1. Defining step counter at each control
if (cond) { construct

stmtl

stmt2
}

19/25

Proper Interleaving of Functional code and Protection

A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

int cnt_if = 6; 1. Defining step counter at each control
if (cond) { construct
stmtl
ent_if++;) ;
. St 7 2. Incrementing step counter after every C
Stmts statement of the construct
ent_if++;,

19/25

Proper Interleaving of Functional code and Protection

A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

int cnt_if = 6; 1. Defining step counter at each control
if icggd) { construct
STtm
c:t:c;f++; 2. Incrementing step counter after every C
in? Lt statement of the construct
Yy . . .
if (cond & cnt_if != 2)) 3. Checking counters against their expfacted
 EL N values at the end of the construct, calling
e — e — = exception handler when it fails

19/25

Proper Interleaving of Functional code and Protection

A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

int cnt_if = 0; int cnt_if = 0;
if (cond) { if (cond) {
stmtl stmtl
cnt_if++; stmt2
stmt2 cnt_if += 2;
cnt_if++; }

}
if (cond && cnt_if != 2)

. Optimizations will remove counter checks and
exception_handler();

group counter incrementations

19/25

Proper Interleaving of Functional code and Protection

A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

int cnt_if = 0; int cnt_if = 0;
if (cond) { if (cond) {
stmtl stmtl
cnt_if++; stmt2
stmt2 cnt_if += 2;
cnt_if++; }

}
if (cond && cnt_if != 2)

. Optimizations will remove counter checks and
exception_handler();

group counter incrementations

Traditional secure approach: compiling at -00
(disabling optimizations)

19/25

Proper Interleaving of Functional code and Protection

Our approach based on property preservation:

int cnt_if = 0;
if (cond) {
stmtl

cnt_if++;
stmt2

cnt_if++;

}
if (cond && cnt_if != 2)
exception_handler();

20/25

Proper Interleaving of Functional code and Protection

Our approach based on property preservation:

1. Observe counter before
int cnt_if = 0: incrementation to prevent
if (cond) { optimi.zati.ons from

stmtl removing it
therel: PROP(observe(cnt_if))
cnt_if++;
stmt2
there2: PROP(observe(cnt_if))!
cnt_if++;
if (cond && cnt_if != 2)
exception_handler();

20/25

Proper Interleaving of Functional code and Protection

Our approach based on property preservation:

1. Observe counter before

int cnt_if = 0; incr.err.lent.ation to prevent
if (cond) { optimizations from
stmt2 removing it
herel: PROP(observe(cnt_if,[qpngAiigb)
cnt_if++; 2. Observe all variables
stmt2 + memory locations to
here2: PROP(observe(cnt_if, '\C,Of‘gr, o ;1)) guarantee the proper
cnt_if++; interleaving of functional
} code and incrementation
if (cond && cnt_if != 2)
exception_handler();

20/25

Security Property Preservation Validation

Attack Side-channel | Data remanence Fault injection
. Masking of | Inserting code to Inserting redundant data
Protection .
secret data | erase secret data and/or protection code
Instruction Presence of Interleaving of Presence of
ordering in sensitive functional and | redundant data
Property . . .
masking memory data protection code | detecting fault
operations erasure injections
N rsa-encrypt in-sci
Application aes-herbst yp P : loop-redundant
rsa-decrypt aes-sci

21/25

Security Property Preservation Validation

Property- -01/2/3/s/z
i property

preserving > j

LLVM 9.0 (debug info)

gdb

Observation
Trace

[+ annotation (property)

Source code

l+ instrumentation (partial state logging)

LLVM 9.0 -00 R execution N Reference

.call printf Trace

21/25

Security Property Preservation Validation

ARMv7-M

Property- -01/2/3/s/z
i property

preserving > j

LLVM 9.0 (debug info)

gdb Observation

Trace

[+ annotation (property)

Source code

l+ instrumentation (partial state logging)

ARMv7-M

.call printf

-00

LLVM 9.0 R execution _ | Reference

>

Trace

21/25

Security Property Preservation Validation

Property- | - ARMv7-M _
preserir}:g 01/2/3/3/2, property gdb Observation
LLVM 9.0 (debug info) Trace
[+ annotation (property)
] all security _

Source code protections preserved :

l+ instrumentation (partial state logging)

ARMv7-M

.call printf

-00

LLVM 9.0 R execution _ | Reference

Trace

21/25

Performance Evaluation

Is the performance penalty due to blocking some optimizations acceptable?

Attack Side-channel | Data remanence Fault injection
. Masking of | Inserting code to Inserting redundant data
Protection .
secret data | erase secret data and/or protection code
Instruction Presence of Interleaving of Presence of
Propert ordering in sensitive functional and | redundant data
perty masking memory data protection code | detecting fault
operations erasure injections
L rsa-encrypt in-sci
Application aes-herbst yp P - loop-redundant
rsa-decrypt aes-sci

22/25

Performance Evaluation

Property- -01/2/3/s/z
>| preserving >
LLVM 9.0
+ annotation (property) -01/2/3/s/z
S—

-00 S

+ coding tricks (when available)
-01/2/3/5/2 —
23 /25

Performance Evaluation
4‘ O0Insecure B0Tricks BB Properties }7

2

= -00

—

. 0.8 .
—

%

k= 0.6 |- =
T 04

+~

€ 02

g 0.

o [2l

rsa-encrypt aes-herbst pin-sci
rsa-decrypt loop-redundant aes-sci

24 /25

Performance Evaluation
4‘ O0Insecure B0Tricks BB Properties }7

2
= -00
T 08| .
o 0
i)
£ 06 4 \ |
g 04 ‘ ‘ ‘
2 02 \
E i Wil
o0

rsa-encrypt aes-herbst pin-sci

rsa-decrypt loop-redundant aes-sci

@ Insecure: fastest executables but protections are modified or removed
when optimizations enabled

24 /25

Performance Evaluation
4‘ O0Insecure B0Tricks BB Properties }7

2
= -00
—
. 0.8 .
i
E06r |} :
T 04 ‘ ‘ ‘ ‘
+~
€ 02
g 0.
o [2l
rsa-encrypt aes-herbst pin-sci
rsa-decrypt loop-redundant aes-sci

@ Insecure: fastest executables but protections are modified or removed
when optimizations enabled

@ Properties preserve source-level protections
e with similar performance compared to fragile tricks

24 /25

Performance Evaluation

executed instr. ratio

4‘ O0Insecure B0Tricks BB Properties }7

1 00 i
0.8 |-

0.6 ‘

I } }
8T R K
. i il

rsa-encrypt aes-herbst pin-sci
rsa-decrypt loop-redundant aes-sci

Insecure: fastest executables but protections are modified or removed
when optimizations enabled
Properties preserve source-level protections

e with similar performance compared to fragile tricks
o with performance improvement over programs compiled at -00 when
no trick exists

24 /25

Conclusion

@ Mechanism to preserve functional properties through optimizing
compilation, enabling automated analyses and verifications at binary
level [Bréjon et al., 2019]

@ Application to preserving source-level protections

e Current work: formalization of a lightweight approach to preserve
security protections, based on data-dependence.

@ Perspective: contribute this work to the community, graduate and get
a position!

25 /25

Compilation-time Evaluation
Oo-o1 Oo-o02 BE-03 BE-0s Hm-0z

4 -

(T T T T
rsa-encrypt aes-herbst pin-sci
rsa-decrypt loop-redundant aes-sci

compilation-time ratio
[N}

1/1

Compilation-time Evaluation
Oo-o1 Oo-o02 BE-03 BE-0s Hm-0z

4 -

(T T T T
rsa-encrypt aes-herbst pin-sci
rsa-decrypt loop-redundant aes-sci

e Compilation-time overhead compared to the original program compiled
with the same optimization flag

compilation-time ratio
[N}

@ High overhead for step counter incrementation protection

1/1

Compilation-time Evaluation
Oo-o1 Oo-o02 BE-03 BE-0s Hm-0z

4 -

(T T T T
rsa-encrypt aes-herbst pin-sci
rsa-decrypt loop-redundant aes-sci

e Compilation-time overhead compared to the original program compiled
with the same optimization flag

compilation-time ratio
[\

@ High overhead for step counter incrementation protection
o Complete program state is observed before each incrementation

1/1

Compilation-time Evaluation
Oo-o1 Oo-o02 BE-03 BE-0s Hm-0z

4 -

(T T T T
rsa-encrypt aes-herbst pin-sci
rsa-decrypt loop-redundant aes-sci

e Compilation-time overhead compared to the original program compiled
with the same optimization flag

compilation-time ratio
[\

@ High overhead for step counter incrementation protection

o Complete program state is observed before each incrementation
o At least one property for every functional C statement

1/1

Compilation-time Evaluation
Oo-o1 Oo-o02 BE-03 BE-0s Hm-0z

4 -

(T T T T
rsa-encrypt aes-herbst pin-sci
rsa-decrypt loop-redundant aes-sci

e Compilation-time overhead compared to the original program compiled
with the same optimization flag

compilation-time ratio
[\

@ High overhead for step counter incrementation protection

o Complete program state is observed before each incrementation
o At least one property for every functional C statement

= worst-case scenario for our approach

1/1

Compilation-time Evaluation
Oo-o1 Oo-o02 BE-03 BE-0s Hm-0z

4 -

(T T T T
rsa-encrypt aes-herbst pin-sci
rsa-decrypt loop-redundant aes-sci

e Compilation-time overhead compared to the original program compiled
with the same optimization flag

compilation-time ratio
[\

@ High overhead for step counter incrementation protection

o Complete program state is observed before each incrementation
o At least one property for every functional C statement

= worst-case scenario for our approach

= price worth paying for preserving source-code protections s

	Appendix

