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Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)
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Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();
int tmp = *mk ^ n;
*mk = tmp ^ m;
...

}

How to reliably prevent the compiler
from optimizing out tmp thus
respect the evaluation order?
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Background and Motivation: WYSINWYX phenomenon

Needs for analysis and verification of binary programs [Balakrishnan
and Reps, 2010] [Bréjon et al., 2019]

Needs for program properties in the executable binaries (e.g.
countermeasure oracles, ...) [Bréjon et al., 2019]
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Needs for analysis and verification of binary programs [Balakrishnan
and Reps, 2010] [Bréjon et al., 2019]

Needs for program properties in the executable binaries (e.g.
countermeasure oracles, ...) [Bréjon et al., 2019]

⇒ Needs for preserving program properties throughout the optimizing
compilation flow
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Property Preservation Through Compilation: Outline

1 Definition of property preservation through compilation

2 Our approach to preserve program properties

3 Implementation of our approach in LLVM

4 Validation of our approach and implementation on security applications
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Definitions
Functional Property
A functional property (Prop,ObsPt) is

Prop a propositional logic formula expressing a program behavioral property

ObsPt an observation point at which Prop is expected to hold
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Definitions
Observation trace
An observation trace is

the sequence of partial states defined by functional properties

encountered during a given execution of the program

int main() {
...
compute(mk1, m1);
compute(mk2, m2);
compute(mk3, m3);
...

}

Observation trace:
...
@here: (tmp, 4860); (mk, 5678); (n, 1234)
@here: (tmp, 5171); (mk, 1234); (n, 4321)
@here: (tmp, 1029); (mk, 2187); (n, 3214)
...
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for any input vector

Source
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Property-preserving
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Observation trace:
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lx = location of x (register or memory address)
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Preserving Properties Through Compilation: Overview

Source code Compiler Binary code

Existing work: tuning optimization passes one-by-one to teach them
about properties [Zarzani, 2013] [Namjoshi and Zuck, 2013]
[Namjoshi, Tagliabue, and Zuck, 2013]
Our approach: more generic solution which does not require modifying
existing optimizations
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+ Properties + Properties

Property-preserving Compiler

Existing work: tuning optimization passes one-by-one to teach them
about properties [Zarzani, 2013] [Namjoshi and Zuck, 2013]
[Namjoshi, Tagliabue, and Zuck, 2013]
Our approach: more generic solution which does not require modifying
existing optimizations

⇒ can be implemented in a production compiler (LLVM)

6 / 25



Property Preservation Through Compilation: Outline

1 Definition of property preservation through compilation

2 Our approach to preserve program properties

3 Implementation of our approach in LLVM

4 Validation of our approach and implementation on security applications
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Preserving Property = Preserving Partial State

Preserving Partial State = Preserving
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Preserving Properties Through Compilation: Our Approach

Preserving Property = Preserving Partial State
Preserving Partial State = Preserving

void compute(int *mk, int m) {
int n = 0; // def 1
...
n = rand(); // def 2
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...
n = 42; // def 3
...

}

entry:
%n1 = 0 ;SSA def 1
...
%n2 = call rand() ;SSA def 2
%mk1 = load %mk.addr
%tmp1 = xor %mk1, %n2

%mk2 = xor %tmp1, %m1
...
%n3 = 42 ;SSA def 3
...

IR level
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Preserving Properties Through Compilation: Our Approach

entry:
%n1 = 0 ;SSA def 1
...
%n2 = call rand() ;SSA def 2

%mk1 = load %mk.addr
%tmp1 = xor %mk1, %n2

call obs.pt( ) ;tmp == *mk^n
%mk2 = xor %tmp1, %m1
...
%n3 = 42 ;SSA def 3
...

memory-barrier, side-effecting:
cannot be removed

Preserve observed memory
locations
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Preserving Properties Through Compilation: Our Approach

entry:
%n1 = 0 ;SSA def 1
...
%n2 = call rand() ;SSA def 2
%n20 = call artificial.def(%n2)
%mk1 = load %mk.addr
%tmp1 = xor %mk1, %n20
%tmp10 = call artificial.def(%tmp1)
call obs.pt(%n20, %tmp10) ;tmp == *mk^n
%mk2 = xor %tmp10, %m1
...
%n3 = 42 ;SSA def 3
...

must be kept through the
whole compilation flow,
removed during code

emission: no interference
with original program
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Preserving Properties Through Compilation: LLVM flow

Source code

+ Properties

Front-end

obs.pt
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artificial.def
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Middle
end

Back-end
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lowering
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lowering

Property
emission

Binary code

+ Properties

11 / 25



Preserving Properties Through Compilation: LLVM flow
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1 Definition of property preservation through compilation

2 Our approach to preserve program properties
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Property Preservation Validation: Outline

1 General Validation Methodology

2 Validation on Functional Properties

3 Validation on Security Properties

4 Performance Overhead Evaluation
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Experimental Validation Methodology
Property preservation = Equality of observation traces
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Functional Validation

Goal: propagating functional properties used for program static
analysis from source to binary level

Programs from Framework for Modular Analysis of C programs
(Frama-C) test suite [Cuoq et al., 2012]

558 functional properties (C boolean expressions), verifying expected
values of variables at a given program point
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Application to Security Properties
Considered properties:

Attack

Side-channel Data remanence Fault injection

Protection

Masking of Inserting code to Inserting redundant data
secret data erase secret data and/or protection code

Property

Instruction Presence of Interleaving of Presence of
ordering in secret functional and redundant data
masking memory data protection code detecting fault
operations erasure injections
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⇒ these security properties are non-functional (refer to notions not clearly
defined in the source program semantics)

⇒ preserving source-level protections by forcibly observing its variables at
specific program points
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Application to Security Properties

Defining new predicate observe(v) which includes v into the partial
state to be preserved

void compute(int *mk, int m) {
int n = 0; // def 1
...
n = rand(); // def 2
int tmp = *mk ^ n;
here: PROP(observe(tmp))
*mk = tmp ^ m;
...
n = 42; // def 3
...

}

18 / 25



Proper Interleaving of Functional code and Protection
A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

if (cond) {
stmt1

stmt2

}
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int cnt_if = 0;
if (cond) {
stmt1
cnt_if++;
stmt2
cnt_if++;

}
if (cond && cnt_if != 2)
exception_handler();

1. Defining step counter at each control
construct

2. Incrementing step counter after every C
statement of the construct

3. Checking counters against their expected
values at the end of the construct, calling
exception handler when it fails
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Optimizations will remove counter checks and
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Traditional secure approach: compiling at -O0
(disabling optimizations)
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Proper Interleaving of Functional code and Protection
Our approach based on property preservation:

int cnt_if = 0;
if (cond) {
stmt1

cnt_if++;
stmt2
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}
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Proper Interleaving of Functional code and Protection
Our approach based on property preservation:

int cnt_if = 0;
if (cond) {
stmt1
here1: PROP(observe(cnt_if, cond, ...))
cnt_if++;
stmt2
here2: PROP(observe(cnt_if, cond, ...))
cnt_if++;

}
if (cond && cnt_if != 2)
exception_handler();

1. Observe counter before
incrementation to prevent
optimizations from
removing it

2. Observe all variables
+ memory locations to
guarantee the proper
interleaving of functional
code and incrementation
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Security Property Preservation Validation

Attack Side-channel Data remanence Fault injection

Protection Masking of Inserting code to Inserting redundant data
secret data erase secret data and/or protection code

Property

Instruction Presence of Interleaving of Presence of
ordering in sensitive functional and redundant data
masking memory data protection code detecting fault
operations erasure injections

Application aes-herbst rsa-encrypt pin-sci loop-redundantrsa-decrypt aes-sci
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Performance Evaluation

Is the performance penalty due to blocking some optimizations acceptable?

Attack Side-channel Data remanence Fault injection

Protection Masking of Inserting code to Inserting redundant data
secret data erase secret data and/or protection code

Property

Instruction Presence of Interleaving of Presence of
ordering in sensitive functional and redundant data
masking memory data protection code detecting fault
operations erasure injections

Application aes-herbst rsa-encrypt pin-sci loop-redundantrsa-decrypt aes-sci
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Performance Evaluation

Source code

Property-
preserving
LLVM 9.0

LLVM 9.0

LLVM 9.0

Properties

Insecure

Reference

Tricks

+ annotation (property)

+ coding tricks (when available)

-O1/2/3/s/z

-O1/2/3/s/z
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-O0
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Conclusion

Mechanism to preserve functional properties through optimizing
compilation, enabling automated analyses and verifications at binary
level [Bréjon et al., 2019]

Application to preserving source-level protections

Current work: formalization of a lightweight approach to preserve
security protections, based on data-dependence.

Perspective: contribute this work to the community, graduate and get
a position!
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⇒ price worth paying for preserving source-code protections
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