
Secure Delivery of Program Properties through
Optimizing Compilation

Son Tuan Vu Karine Heydemann
Sorbonne Université

Laboratoire d’Informatique de Paris 6
Arnaud de Grandmaison

Arm
Albert Cohen

Google

24 September 2020

1 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)
secret_key ⊕ m

m

secret_key (leaked)

n

secret_key ⊕ n

secret_key ⊕ m

n

secret_key ⊕ m ⊕ n

m

secret_key ⊕ n

2 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();

*mk = (*mk ^ n) ^ m;
...

}

2 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();

*mk = (*mk ^ n) ^ m;
...

}

secret_key ⊕ m

Re-masking of secret
key with new mask n

De-masking of old mask m

2 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();

*mk = (*mk ^ n) ^ m;
...

} Re-masking of secret
key with new mask n

De-masking of old mask m

Security property:
Re-masking before De-masking

2 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();

*mk = (*mk ^ n) ^ m;
...

}

void compute(int *mk, int m) {
...
int n = rand();

*mk = (*mk ^ m) ^ n;
...

}

Evaluation reordering

2 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();

*mk = (*mk ^ n) ^ m;
...

}

void compute(int *mk, int m) {
...
int n = rand();

*mk = (*mk ^ m) ^ n;
...

}

Evaluation reordering

Property not respected

2 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();
int tmp = *mk ^ n;
*mk = tmp ^ m;
...

}

Use of temporary
variable to fix

evaluation order

2 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();
int tmp = *mk ^ n;
*mk = tmp ^ m;
...

}

void compute(int *mk, int m) {
...
int n = rand();

*mk = *mk ^ m ^ n;
...

}

Temporary variable optimized out
+

Evaluation reordering

2 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();
int tmp = *mk ^ n;
*mk = tmp ^ m;
...

}

void compute(int *mk, int m) {
...
int n = rand();

*mk = *mk ^ m ^ n;
...

}

Temporary variable optimized out
+

Evaluation reordering

Property not respected

2 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();
int tmp = *mk ^ n;
*mk = tmp ^ m;
...

}

void compute(int *mk, int m) {
...
int n = rand();
volatile int tmp = *mk ^ n;
__asm__ __volatile__

("":::"memory");
*mk = tmp ^ m;
...

}

Coding trick: volatile + asm

2 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();
int tmp = *mk ^ n;
*mk = tmp ^ m;
...

}

void compute(int *mk, int m) {
...
int n = rand();
volatile int tmp = *mk ^ n;
__asm__ __volatile__

("":::"memory");
*mk = tmp ^ m;
...

}

Coding trick: volatile + asm

Fragile and not portable:
volatile int may be ignored

2 / 25

Background and Motivation: WYSINWYX phenomenon
Assuming a functionally-correct, well-defined program
Mismatch between

1 Behavior intended by the programmer (source code)
2 What is actually executed by the processor (machine code)

Open issue for security engineering: e.g. cryptographic mask changing
(so that observable results are statistically uncorrelated to secret data)

void compute(int *mk, int m) {
...
int n = rand();
int tmp = *mk ^ n;
*mk = tmp ^ m;
...

}

How to reliably prevent the compiler
from optimizing out tmp thus
respect the evaluation order?

2 / 25

Background and Motivation: WYSINWYX phenomenon

Needs for analysis and verification of binary programs [Balakrishnan
and Reps, 2010] [Bréjon et al., 2019]

Needs for program properties in the executable binaries (e.g.
countermeasure oracles, ...) [Bréjon et al., 2019]

3 / 25

Background and Motivation: WYSINWYX phenomenon

Needs for analysis and verification of binary programs [Balakrishnan
and Reps, 2010] [Bréjon et al., 2019]

Needs for program properties in the executable binaries (e.g.
countermeasure oracles, ...) [Bréjon et al., 2019]

⇒ Needs for preserving program properties throughout the optimizing
compilation flow

3 / 25

Property Preservation Through Compilation: Outline

1 Definition of property preservation through compilation

2 Our approach to preserve program properties

3 Implementation of our approach in LLVM

4 Validation of our approach and implementation on security applications

4 / 25

Definitions
Functional Property
A functional property (Prop,ObsPt) is

Prop a propositional logic formula expressing a program behavioral property

ObsPt an observation point at which Prop is expected to hold

5 / 25

Definitions
Functional Property
A functional property (Prop,ObsPt) is

Prop a propositional logic formula expressing a program behavioral property

ObsPt an observation point at which Prop is expected to hold

void compute(int *mk, int m) {
...
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...

}

Implicitly equivalent to
"Re-masking before De-masking"

5 / 25

Definitions
Functional Property
A functional property (Prop,ObsPt) is

Prop a propositional logic formula expressing a program behavioral property

ObsPt an observation point at which Prop is expected to hold

void compute(int *mk, int m) {
...
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...

}

ObsPt

5 / 25

Definitions
Functional Property
A functional property (Prop,ObsPt) is

Prop a propositional logic formula expressing a program behavioral property

ObsPt an observation point at which Prop is expected to hold

void compute(int *mk, int m) {
...
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...

}

ObsPt Prop

5 / 25

Definitions
Functional Property and Partial State
A functional property (Prop,ObsPt) defines a partial state (ObsPt, ObsVar , ObsMem):

ObsPt the observation point defined by the property

ObsVar = {(var , val) | var observed variable occurring in Prop}
ObsMem = {(mem, val) | mem observed memory location occurring in Prop}

void compute(int *mk, int m) {
...
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...

}

ObsPt

5 / 25

Definitions
Functional Property and Partial State
A functional property (Prop,ObsPt) defines a partial state (ObsPt, ObsVar , ObsMem):

ObsPt the observation point defined by the property

ObsVar = {(var , val) | var observed variable occurring in Prop}

ObsMem = {(mem, val) | mem observed memory location occurring in Prop}

void compute(int *mk, int m) {
...
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...

}
ObsVar:
{(tmp, 4860); (n, 5678)}

ObsPt

5 / 25

Definitions
Functional Property and Partial State
A functional property (Prop,ObsPt) defines a partial state (ObsPt, ObsVar , ObsMem):

ObsPt the observation point defined by the property

ObsVar = {(var , val) | var observed variable occurring in Prop}
ObsMem = {(mem, val) | mem observed memory location occurring in Prop}

void compute(int *mk, int m) {
...
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...

}
ObsVar:
{(tmp, 4860); (n, 5678)}

ObsMem:
{(mk, 1234)}

ObsPt

5 / 25

Definitions
Functional Property and Partial State
A functional property (Prop,ObsPt) defines a partial state (ObsPt, ObsVar , ObsMem):

ObsPt the observation point defined by the property

ObsVar = {(var , val) | var observed variable occurring in Prop}
ObsMem = {(mem, val) | mem observed memory location occurring in Prop}

void compute(int *mk, int m) {
...
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...

}
ObsVar:
{(tmp, 4860); (n, 5678)}

ObsMem:
{(mk, 1234)}

ObsPt

Partial State:
(ObsPt, ObsVar, ObsMem)

5 / 25

Definitions
Observation trace
An observation trace is

the sequence of partial states defined by functional properties

encountered during a given execution of the program

int main() {
...
compute(mk1, m1);
compute(mk2, m2);
compute(mk3, m3);
...

}

Observation trace:
...
@here: (tmp, 4860); (mk, 5678); (n, 1234)
@here: (tmp, 5171); (mk, 1234); (n, 4321)
@here: (tmp, 1029); (mk, 2187); (n, 3214)
...

5 / 25

Definitions
Functional Property Preservation
A transformation τ() preserves functional properties of program P if

P and τ(P) produce equal observation traces given the same input

for any input vector

Source
Program

5 / 25

Definitions
Functional Property Preservation
A transformation τ() preserves functional properties of program P if

P and τ(P) produce equal observation traces given the same input

for any input vector

Source
Program

Observation trace:
...
@here: (tmp, 4860); (mk, 5678); (n, 1234)
@here: (tmp, 5171); (mk, 1234); (n, 4321)
@here: (tmp, 1029); (mk, 2187); (n, 3214)
...

5 / 25

Definitions
Functional Property Preservation
A transformation τ() preserves functional properties of program P if

P and τ(P) produce equal observation traces given the same input

for any input vector

Source
Program

Observation trace:
...
@here: (tmp, 4860); (mk, 5678); (n, 1234)
@here: (tmp, 5171); (mk, 1234); (n, 4321)
@here: (tmp, 1029); (mk, 2187); (n, 3214)
...

Binary
Program

Property-preserving
compilation

5 / 25

Definitions
Functional Property Preservation
A transformation τ() preserves functional properties of program P if

P and τ(P) produce equal observation traces given the same input

for any input vector

Source
Program

Observation trace:
...
@here: (tmp, 4860); (mk, 5678); (n, 1234)
@here: (tmp, 5171); (mk, 1234); (n, 4321)
@here: (tmp, 1029); (mk, 2187); (n, 3214)
...

Binary
Program

Property-preserving
compilation

Observation trace:
...
@0x80000000: (ltmp, 4860); (lmk , 5678); (ln, 1234)
@0x80000000: (ltmp, 5171); (lmk , 1234); (ln, 4321)
@0x80000000: (ltmp, 1029); (lmk , 2187); (ln, 3214)
...

lx = location of x (register or memory address)

5 / 25

Definitions
Functional Property Preservation
A transformation τ() preserves functional properties of program P if

P and τ(P) produce equal observation traces given the same input

for any input vector

Source
Program

Observation trace:
...
@here: (tmp, 4860); (mk, 5678); (n, 1234)
@here: (tmp, 5171); (mk, 1234); (n, 4321)
@here: (tmp, 1029); (mk, 2187); (n, 3214)
...

Binary
Program

Property-preserving
compilation

Observation trace:
...
@0x80000000: (ltmp, 4860); (lmk , 5678); (ln, 1234)
@0x80000000: (ltmp, 5171); (lmk , 1234); (ln, 4321)
@0x80000000: (ltmp, 1029); (lmk , 2187); (ln, 3214)
...

= (for any input vector)

5 / 25

Preserving Properties Through Compilation: Overview

Source code Compiler Binary code

Existing work: tuning optimization passes one-by-one to teach them
about properties [Zarzani, 2013] [Namjoshi and Zuck, 2013]
[Namjoshi, Tagliabue, and Zuck, 2013]
Our approach: more generic solution which does not require modifying
existing optimizations

6 / 25

Preserving Properties Through Compilation: Overview

Source code Binary code

+ Properties + Properties

Property-preserving Compiler

Existing work: tuning optimization passes one-by-one to teach them
about properties [Zarzani, 2013] [Namjoshi and Zuck, 2013]
[Namjoshi, Tagliabue, and Zuck, 2013]
Our approach: more generic solution which does not require modifying
existing optimizations

6 / 25

Preserving Properties Through Compilation: Overview

Source code Binary code

+ Properties + Properties

Property-preserving Compiler

Existing work: tuning optimization passes one-by-one to teach them
about properties [Zarzani, 2013] [Namjoshi and Zuck, 2013]
[Namjoshi, Tagliabue, and Zuck, 2013]

Our approach: more generic solution which does not require modifying
existing optimizations

6 / 25

Preserving Properties Through Compilation: Overview

Source code Binary code

+ Properties + Properties

Property-preserving Compiler

Existing work: tuning optimization passes one-by-one to teach them
about properties [Zarzani, 2013] [Namjoshi and Zuck, 2013]
[Namjoshi, Tagliabue, and Zuck, 2013]
Our approach: more generic solution which does not require modifying
existing optimizations

6 / 25

Preserving Properties Through Compilation: Overview

Source code Binary code

+ Properties + Properties

Property-preserving Compiler

Existing work: tuning optimization passes one-by-one to teach them
about properties [Zarzani, 2013] [Namjoshi and Zuck, 2013]
[Namjoshi, Tagliabue, and Zuck, 2013]
Our approach: more generic solution which does not require modifying
existing optimizations

⇒ can be implemented in a production compiler (LLVM)

6 / 25

Property Preservation Through Compilation: Outline

1 Definition of property preservation through compilation

2 Our approach to preserve program properties

3 Implementation of our approach in LLVM

4 Validation of our approach and implementation on security applications

7 / 25

Preserving Properties Through Compilation: Our Approach

Preserving Property = Preserving Partial State

Preserving Partial State = Preserving

void compute(int *mk, int m) {
int n = 0; // def 1
...
n = rand(); // def 2
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...
n = 42; // def 3
...

}

8 / 25

Preserving Properties Through Compilation: Our Approach

Preserving Property = Preserving Partial State
Preserving Partial State = Preserving

void compute(int *mk, int m) {
int n = 0; // def 1
...
n = rand(); // def 2
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...
n = 42; // def 3
...

}

8 / 25

Preserving Properties Through Compilation: Our Approach

Preserving Property = Preserving Partial State
Preserving Partial State = Preserving

void compute(int *mk, int m) {
int n = 0; // def 1
...
n = rand(); // def 2
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...
n = 42; // def 3
...

}

locations + values of observed variables

locations + values of observed memory locations

8 / 25

Preserving Properties Through Compilation: Our Approach

Preserving Property = Preserving Partial State
Preserving Partial State = Preserving

void compute(int *mk, int m) {
int n = 0; // def 1
...
n = rand(); // def 2
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...
n = 42; // def 3
...

}

locations + values of observed variables

locations + values of observed memory locations

an equivalent observation point (w.r.t. the
observed entities)

8 / 25

Preserving Properties Through Compilation: Our Approach

Preserving Property = Preserving Partial State
Preserving Partial State = Preserving

void compute(int *mk, int m) {
int n = 0; // def 1
...
n = rand(); // def 2
int tmp = *mk ^ n;
here: PROP(tmp == *mk ^ n)
*mk = tmp ^ m;
...
n = 42; // def 3
...

}

entry:
%n1 = 0 ;SSA def 1
...
%n2 = call rand() ;SSA def 2
%mk1 = load %mk.addr
%tmp1 = xor %mk1, %n2

%mk2 = xor %tmp1, %m1
...
%n3 = 42 ;SSA def 3
...

IR level

8 / 25

Preserving Properties Through Compilation: Our Approach

entry:
%n1 = 0 ;SSA def 1
...
%n2 = call rand() ;SSA def 2

%mk1 = load %mk.addr
%tmp1 = xor %mk1, %n2

call obs.pt() ;tmp == *mk^n
%mk2 = xor %tmp1, %m1
...
%n3 = 42 ;SSA def 3
...

memory-barrier, side-effecting:
cannot be removed

Preserve observed memory
locations

9 / 25

Preserving Properties Through Compilation: Our Approach

entry:
%n1 = 0 ;SSA def 1
...
%n2 = call rand() ;SSA def 2

%mk1 = load %mk.addr
%tmp1 = xor %mk1, %n2

call obs.pt(%n2 , %tmp1) ;tmp == *mk^n
%mk2 = xor %tmp1, %m1
...
%n3 = 42 ;SSA def 3
...

SSA variables
to be preserved

9 / 25

Preserving Properties Through Compilation: Our Approach

entry:
%n1 = 0 ;SSA def 1
...
%n2 = call rand() ;SSA def 2
%n20 = call artificial.def(%n2)
%mk1 = load %mk.addr
%tmp1 = xor %mk1, %n20

call obs.pt(%n20, %tmp1) ;tmp == *mk^n
%mk2 = xor %tmp1, %m1
...
%n3 = 42 ;SSA def 3
...

9 / 25

Preserving Properties Through Compilation: Our Approach

entry:
%n1 = 0 ;SSA def 1
...
%n2 = call rand() ;SSA def 2
%n20 = call artificial.def(%n2)
%mk1 = load %mk.addr
%tmp1 = xor %mk1, %n20
%tmp10 = call artificial.def(%tmp1)
call obs.pt(%n20, %tmp10) ;tmp == *mk^n
%mk2 = xor %tmp10, %m1
...
%n3 = 42 ;SSA def 3
...

9 / 25

Preserving Properties Through Compilation: Our Approach

entry:
%n1 = 0 ;SSA def 1
...
%n2 = call rand() ;SSA def 2
%n20 = call artificial.def(%n2)
%mk1 = load %mk.addr
%tmp1 = xor %mk1, %n20
%tmp10 = call artificial.def(%tmp1)
call obs.pt(%n20, %tmp10) ;tmp == *mk^n
%mk2 = xor %tmp10, %m1
...
%n3 = 42 ;SSA def 3
...

opaque, side-effecting:
cannot be analyzed or removed

9 / 25

Preserving Properties Through Compilation: Our Approach

entry:
%n1 = 0 ;SSA def 1
...
%n2 = call rand() ;SSA def 2
%n20 = call artificial.def(%n2)
%mk1 = load %mk.addr
%tmp1 = xor %mk1, %n20
%tmp10 = call artificial.def(%tmp1)
call obs.pt(%n20, %tmp10) ;tmp == *mk^n
%mk2 = xor %tmp10, %m1
...
%n3 = 42 ;SSA def 3
...

must be kept through the
whole compilation flow,
removed during code

emission: no interference
with original program

9 / 25

Property Preservation Through Compilation: Outline

1 Definition of property preservation through compilation

2 Our approach to preserve program properties

3 Implementation of our approach in LLVM

4 Validation of our approach and implementation on security applications

10 / 25

Preserving Properties Through Compilation: LLVM flow

Source code

+ Properties

Front-end

obs.pt
insertion

artificial.def
insertion

Middle
end

Back-end

obs.pt
lowering

artificial.def
lowering

Property
emission

Binary code

+ Properties

11 / 25

Preserving Properties Through Compilation: LLVM flow

Source code

GNU
annotation
attribute

Front-end

obs.pt
insertion

artificial.def
insertion

Middle
end

Back-end

obs.pt
lowering

artificial.def
lowering

Property
emission

Binary code

DWARF
debug
info

12 / 25

Property Preservation Through Compilation: Outline

1 Definition of property preservation through compilation

2 Our approach to preserve program properties

3 Implementation of our approach in LLVM

4 Validation of our approach and implementation on security applications

13 / 25

Property Preservation Validation: Outline

1 General Validation Methodology

2 Validation on Functional Properties

3 Validation on Security Properties

4 Performance Overhead Evaluation

14 / 25

Experimental Validation Methodology
Property preservation = Equality of observation traces

15 / 25

Experimental Validation Methodology
Property preservation = Equality of observation traces

Source code

15 / 25

Experimental Validation Methodology
Property preservation = Equality of observation traces

Source code

Property-
preserving
LLVM 9.0

LLVM 9.0

+ annotation (property)

+ instrumentation (partial state logging)

15 / 25

Experimental Validation Methodology
Property preservation = Equality of observation traces

Source code

Property-
preserving
LLVM 9.0

Binary

LLVM 9.0
Binary

+ annotation (property)

+ instrumentation (partial state logging)

-O1/2/3/s/z

-O0

15 / 25

Experimental Validation Methodology
Property preservation = Equality of observation traces

Source code

Property-
preserving
LLVM 9.0

Binary
property

(debug info)

LLVM 9.0
Binary

+ annotation (property)

+ instrumentation (partial state logging)

-O1/2/3/s/z

-O0

15 / 25

Experimental Validation Methodology
Property preservation = Equality of observation traces

Source code

Property-
preserving
LLVM 9.0

Binary
property

(debug info)

LLVM 9.0
Binary

.call printf

+ annotation (property)

+ instrumentation (partial state logging)

-O1/2/3/s/z

-O0

15 / 25

Experimental Validation Methodology
Property preservation = Equality of observation traces

Source code

Property-
preserving
LLVM 9.0

Binary
property

(debug info)

LLVM 9.0
Binary

.call printf

Observation
Trace

Reference
Trace

+ annotation (property)

+ instrumentation (partial state logging)

-O1/2/3/s/z

-O0

gdb

execution

15 / 25

Experimental Validation Methodology
Property preservation = Equality of observation traces

Source code

Property-
preserving
LLVM 9.0

Binary
property

(debug info)

LLVM 9.0
Binary

.call printf

Observation
Trace

Reference
Trace

+ annotation (property)

+ instrumentation (partial state logging)

-O1/2/3/s/z

-O0

gdb

execution

= ?

15 / 25

Functional Validation

Goal: propagating functional properties used for program static
analysis from source to binary level

Programs from Framework for Modular Analysis of C programs
(Frama-C) test suite [Cuoq et al., 2012]

558 functional properties (C boolean expressions), verifying expected
values of variables at a given program point

16 / 25

Functional Validation

Source code

Property-
preserving
LLVM 9.0

property
(debug info)

LLVM 9.0 .call printf

Observation
Trace

Reference
Trace

+ annotation (property)

+ instrumentation (partial state logging)

-O1/2/3/s/z

-O0

gdb

execution

16 / 25

Functional Validation

Source code

Property-
preserving
LLVM 9.0

x86-64
property

(debug info)

LLVM 9.0
x86-64

.call printf

Observation
Trace

Reference
Trace

+ annotation (property)

+ instrumentation (partial state logging)

-O1/2/3/s/z

-O0

gdb

execution

16 / 25

Functional Validation

Source code

Property-
preserving
LLVM 9.0

x86-64
property

(debug info)

LLVM 9.0
x86-64

.call printf

Observation
Trace

Reference
Trace

+ annotation (property)

+ instrumentation (partial state logging)

-O1/2/3/s/z

-O0

gdb

execution

558 properties preserved =

16 / 25

Application to Security Properties
Considered properties:

Attack

Side-channel Data remanence Fault injection

Protection

Masking of Inserting code to Inserting redundant data
secret data erase secret data and/or protection code

Property

Instruction Presence of Interleaving of Presence of
ordering in secret functional and redundant data
masking memory data protection code detecting fault
operations erasure injections

17 / 25

Application to Security Properties
Considered properties:

Attack Side-channel

Data remanence Fault injection

Protection Masking of

Inserting code to Inserting redundant data

secret data

erase secret data and/or protection code

Property

Instruction

Presence of Interleaving of Presence of

ordering in

secret functional and redundant data

masking

memory data protection code detecting fault

operations

erasure injections

17 / 25

Application to Security Properties
Considered properties:

Attack Side-channel Data remanence

Fault injection

Protection Masking of Inserting code to

Inserting redundant data

secret data erase secret data

and/or protection code

Property

Instruction Presence of

Interleaving of Presence of

ordering in secret

functional and redundant data

masking memory data

protection code detecting fault

operations erasure

injections

17 / 25

Application to Security Properties
Considered properties:

Attack Side-channel Data remanence Fault injection

Protection Masking of Inserting code to Inserting redundant data
secret data erase secret data and/or protection code

Property

Instruction Presence of Interleaving of Presence of
ordering in secret functional and redundant data
masking memory data protection code detecting fault
operations erasure injections

17 / 25

Application to Security Properties
Considered properties:

Attack Side-channel Data remanence Fault injection

Protection Masking of Inserting code to Inserting redundant data
secret data erase secret data and/or protection code

Property

Instruction Presence of Interleaving of Presence of
ordering in secret functional and redundant data
masking memory data protection code detecting fault
operations erasure injections

⇒ these security properties are non-functional (refer to notions not clearly
defined in the source program semantics)

17 / 25

Application to Security Properties
Considered properties:

Attack Side-channel Data remanence Fault injection

Protection Masking of Inserting code to Inserting redundant data
secret data erase secret data and/or protection code

Property

Instruction Presence of Interleaving of Presence of
ordering in secret functional and redundant data
masking memory data protection code detecting fault
operations erasure injections

⇒ these security properties are non-functional (refer to notions not clearly
defined in the source program semantics)

⇒ preserving source-level protections by forcibly observing its variables at
specific program points

17 / 25

Application to Security Properties

Defining new predicate observe(v) which includes v into the partial
state to be preserved

void compute(int *mk, int m) {
int n = 0; // def 1
...
n = rand(); // def 2
int tmp = *mk ^ n;
here: PROP(observe(tmp))
*mk = tmp ^ m;
...
n = 42; // def 3
...

}

18 / 25

Proper Interleaving of Functional code and Protection
A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

if (cond) {
stmt1

stmt2

}

19 / 25

Proper Interleaving of Functional code and Protection
A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

int cnt_if = 0;
if (cond) {
stmt1

stmt2

}

1. Defining step counter at each control
construct

19 / 25

Proper Interleaving of Functional code and Protection
A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

int cnt_if = 0;
if (cond) {
stmt1
cnt_if++;
stmt2
cnt_if++;

}

1. Defining step counter at each control
construct

2. Incrementing step counter after every C
statement of the construct

19 / 25

Proper Interleaving of Functional code and Protection
A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

int cnt_if = 0;
if (cond) {
stmt1
cnt_if++;
stmt2
cnt_if++;

}
if (cond && cnt_if != 2)
exception_handler();

1. Defining step counter at each control
construct

2. Incrementing step counter after every C
statement of the construct

3. Checking counters against their expected
values at the end of the construct, calling
exception handler when it fails

19 / 25

Proper Interleaving of Functional code and Protection
A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

int cnt_if = 0;
if (cond) {
stmt1
cnt_if++;
stmt2
cnt_if++;

}
if (cond && cnt_if != 2)
exception_handler();

int cnt_if = 0;
if (cond) {
stmt1
stmt2
cnt_if += 2;

}

Optimizations will remove counter checks and
group counter incrementations

19 / 25

Proper Interleaving of Functional code and Protection
A source-level countermeasure against fault attacks altering the program
control flow [Lalande, Heydemann, and Berthomé, 2014]

int cnt_if = 0;
if (cond) {
stmt1
cnt_if++;
stmt2
cnt_if++;

}
if (cond && cnt_if != 2)
exception_handler();

int cnt_if = 0;
if (cond) {
stmt1
stmt2
cnt_if += 2;

}

Optimizations will remove counter checks and
group counter incrementations

Traditional secure approach: compiling at -O0
(disabling optimizations)

19 / 25

Proper Interleaving of Functional code and Protection
Our approach based on property preservation:

int cnt_if = 0;
if (cond) {
stmt1

cnt_if++;
stmt2

cnt_if++;
}
if (cond && cnt_if != 2)
exception_handler();

20 / 25

Proper Interleaving of Functional code and Protection
Our approach based on property preservation:

int cnt_if = 0;
if (cond) {
stmt1
here1: PROP(observe(cnt_if))
cnt_if++;
stmt2
here2: PROP(observe(cnt_if))
cnt_if++;

}
if (cond && cnt_if != 2)
exception_handler();

1. Observe counter before
incrementation to prevent
optimizations from
removing it

20 / 25

Proper Interleaving of Functional code and Protection
Our approach based on property preservation:

int cnt_if = 0;
if (cond) {
stmt1
here1: PROP(observe(cnt_if, cond, ...))
cnt_if++;
stmt2
here2: PROP(observe(cnt_if, cond, ...))
cnt_if++;

}
if (cond && cnt_if != 2)
exception_handler();

1. Observe counter before
incrementation to prevent
optimizations from
removing it

2. Observe all variables
+ memory locations to
guarantee the proper
interleaving of functional
code and incrementation

20 / 25

Security Property Preservation Validation

Attack Side-channel Data remanence Fault injection

Protection Masking of Inserting code to Inserting redundant data
secret data erase secret data and/or protection code

Property

Instruction Presence of Interleaving of Presence of
ordering in sensitive functional and redundant data
masking memory data protection code detecting fault
operations erasure injections

Application aes-herbst rsa-encrypt pin-sci loop-redundantrsa-decrypt aes-sci

21 / 25

Security Property Preservation Validation

Source code

Property-
preserving
LLVM 9.0

property
(debug info)

LLVM 9.0 .call printf

Observation
Trace

Reference
Trace

+ annotation (property)

+ instrumentation (partial state logging)

-O1/2/3/s/z

-O0

gdb

execution

21 / 25

Security Property Preservation Validation

Source code

Property-
preserving
LLVM 9.0

ARMv7-M
property

(debug info)

LLVM 9.0
ARMv7-M

.call printf

Observation
Trace

Reference
Trace

+ annotation (property)

+ instrumentation (partial state logging)

-O1/2/3/s/z

-O0

gdb

execution

21 / 25

Security Property Preservation Validation

Source code

Property-
preserving
LLVM 9.0

ARMv7-M
property

(debug info)

LLVM 9.0
ARMv7-M

.call printf

Observation
Trace

Reference
Trace

+ annotation (property)

+ instrumentation (partial state logging)

-O1/2/3/s/z

-O0

gdb

execution

all security
protections preserved =

21 / 25

Performance Evaluation

Is the performance penalty due to blocking some optimizations acceptable?

Attack Side-channel Data remanence Fault injection

Protection Masking of Inserting code to Inserting redundant data
secret data erase secret data and/or protection code

Property

Instruction Presence of Interleaving of Presence of
ordering in sensitive functional and redundant data
masking memory data protection code detecting fault
operations erasure injections

Application aes-herbst rsa-encrypt pin-sci loop-redundantrsa-decrypt aes-sci

22 / 25

Performance Evaluation

Source code

Property-
preserving
LLVM 9.0

LLVM 9.0

LLVM 9.0

Properties

Insecure

Reference

Tricks

+ annotation (property)

+ coding tricks (when available)

-O1/2/3/s/z

-O1/2/3/s/z

-O1/2/3/s/z

-O0

23 / 25

Performance Evaluation

rsa-encrypt
rsa-decrypt

aes-herbst
loop-redundant

pin-sci
aes-sci

0

0.2

0.4

0.6

0.8

1

ex
ec
u
te
d
in
st
r.

ra
ti
o

Insecure Tricks Properties

-O0

24 / 25

Performance Evaluation

rsa-encrypt
rsa-decrypt

aes-herbst
loop-redundant

pin-sci
aes-sci

0

0.2

0.4

0.6

0.8

1

ex
ec
u
te
d
in
st
r.

ra
ti
o

Insecure Tricks Properties

-O0

Insecure: fastest executables but protections are modified or removed
when optimizations enabled

Properties preserve source-level protections

with similar performance compared to fragile tricks
with performance improvement over programs compiled at -O0 when
no trick exists

24 / 25

Performance Evaluation

rsa-encrypt
rsa-decrypt

aes-herbst
loop-redundant

pin-sci
aes-sci

0

0.2

0.4

0.6

0.8

1

ex
ec
u
te
d
in
st
r.

ra
ti
o

Insecure Tricks Properties

-O0

Insecure: fastest executables but protections are modified or removed
when optimizations enabled
Properties preserve source-level protections

with similar performance compared to fragile tricks

with performance improvement over programs compiled at -O0 when
no trick exists

24 / 25

Performance Evaluation

rsa-encrypt
rsa-decrypt

aes-herbst
loop-redundant

pin-sci
aes-sci

0

0.2

0.4

0.6

0.8

1

ex
ec
u
te
d
in
st
r.

ra
ti
o

Insecure Tricks Properties

-O0

Insecure: fastest executables but protections are modified or removed
when optimizations enabled
Properties preserve source-level protections

with similar performance compared to fragile tricks
with performance improvement over programs compiled at -O0 when
no trick exists

24 / 25

Conclusion

Mechanism to preserve functional properties through optimizing
compilation, enabling automated analyses and verifications at binary
level [Bréjon et al., 2019]

Application to preserving source-level protections

Current work: formalization of a lightweight approach to preserve
security protections, based on data-dependence.

Perspective: contribute this work to the community, graduate and get
a position!

25 / 25

Compilation-time Evaluation

rsa-encrypt
rsa-decrypt

aes-herbst
loop-redundant

pin-sci
aes-sci

1

2

3

4

co
m
p
il
at
io
n
-t
im

e
ra
ti
o -O1 -O2 -O3 -Os -Oz

1 / 1

Compilation-time Evaluation

rsa-encrypt
rsa-decrypt

aes-herbst
loop-redundant

pin-sci
aes-sci

1

2

3

4

co
m
p
il
at
io
n
-t
im

e
ra
ti
o -O1 -O2 -O3 -Os -Oz

Compilation-time overhead compared to the original program compiled
with the same optimization flag
High overhead for step counter incrementation protection

Complete program state is observed before each incrementation
At least one property for every functional C statement

1 / 1

Compilation-time Evaluation

rsa-encrypt
rsa-decrypt

aes-herbst
loop-redundant

pin-sci
aes-sci

1

2

3

4

co
m
p
il
at
io
n
-t
im

e
ra
ti
o -O1 -O2 -O3 -Os -Oz

Compilation-time overhead compared to the original program compiled
with the same optimization flag
High overhead for step counter incrementation protection

Complete program state is observed before each incrementation

At least one property for every functional C statement

1 / 1

Compilation-time Evaluation

rsa-encrypt
rsa-decrypt

aes-herbst
loop-redundant

pin-sci
aes-sci

1

2

3

4

co
m
p
il
at
io
n
-t
im

e
ra
ti
o -O1 -O2 -O3 -Os -Oz

Compilation-time overhead compared to the original program compiled
with the same optimization flag
High overhead for step counter incrementation protection

Complete program state is observed before each incrementation
At least one property for every functional C statement

1 / 1

Compilation-time Evaluation

rsa-encrypt
rsa-decrypt

aes-herbst
loop-redundant

pin-sci
aes-sci

1

2

3

4

co
m
p
il
at
io
n
-t
im

e
ra
ti
o -O1 -O2 -O3 -Os -Oz

Compilation-time overhead compared to the original program compiled
with the same optimization flag
High overhead for step counter incrementation protection

Complete program state is observed before each incrementation
At least one property for every functional C statement

⇒ worst-case scenario for our approach

1 / 1

Compilation-time Evaluation

rsa-encrypt
rsa-decrypt

aes-herbst
loop-redundant

pin-sci
aes-sci

1

2

3

4

co
m
p
il
at
io
n
-t
im

e
ra
ti
o -O1 -O2 -O3 -Os -Oz

Compilation-time overhead compared to the original program compiled
with the same optimization flag
High overhead for step counter incrementation protection

Complete program state is observed before each incrementation
At least one property for every functional C statement

⇒ worst-case scenario for our approach

⇒ price worth paying for preserving source-code protections
1 / 1

	Appendix

