
JAIF 2020 | Vincent Werner1 2 Laurent Maingault1 Marie-Laure Potet2 | 24/09/2020

AN END-TO-END APPROACH FOR MULTI-
FAULT ATTACK VULNERABILITY ASSESSMENT

1 Univ. Grenoble Alpes, CEA, LETI, DSYS, CESTI, F-38000 Grenoble, first.last@cea.fr
2 Univ. Grenoble Alpes, CNRS, VERIMAG, F-38000 Grenoble, first.last@univ-grenoble-alpes.fr

This work is supported by the French National Research Agency in the framework of the ”Investissements d’avenir” program (ANR-15-IDEX-02 and ANR-10-AIRT-05).

| 2

• Fault attack can leak information

• Difficulties to find fault attack vulnerabilities in software using hardware weaknesses:

1. Find implementation weaknesses  Fault Analysis  Fault model assumptions ??
• Wrong assumption  False positives, miss potential fault attacks

2. Fault Exploitation  Equipment Configuration  Fault injection settings ??
• Too many combinations possible

3. The more faults we inject, the harder the attack
• Combinatorial explosion

CONTEXT

Laser EM Power/Clock glitch

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 3

THE THREE MAIN CHALLENGES TO DO MULTI-FAULT ATTACKS

• Challenge n°1 Reduce the gap between fault analysis and fault exploitation

• Stronger fault model assumptions

• Challenge n°2 Improve the selection of fault injection settings

• Fault injection settings selection according to fault models

• Challenge n°3 Find multi-fault attacks with different fault models  Combined Fault Attacks

• Combinatorial explosion

• Open new attack paths

• Find unnoticed vulnerabilities

Same fault models Different fault models
JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 4

• Proposition A 3-step end-to-end approach

• Step 1 Tool-assisted fault model inference

• Find target specific fault models

• Better fault model assumptions

• Improve the fault injection settings selection

• Step 2 Tool-assisted fault analysis

• With target specific fault models

• Find efficiently combined fault attacks

• Less false positives

• Step 3 Tool-assisted fault exploitation

• Generate full equipment configuration

METHODOLOGY OVERVIEW

Fault Model

Inference

Fault Exploitation

Fault Analysis

1

2

3

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 5

• Target Chip: ARM Cortex M4

• 32-bit processor

• 3-stage pipeline

• Widely-used in embedded systems

• Target Area: Flash Logic
• To perturb fetch/decode stage of the pipeline

• Target Application

• Another VerifyPin

• Authentication program

• Hardened with software countermeasures

• Robust to single-fault attacks

APPLICATION ON A REAL TARGET

FLASH MEMORY

LOGIC

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 6

Fault Injection Simulation

FAULT MODEL INFERENCE

 QUICK OVERVIEW, 3 SUB STEPS
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

Faulty outputs

000068BE 00007A2C

Fault injection settings

Faulty outputs

000068BE 00007A2C

ISA Fault Models

(x=12µm, y=10µm, delay=10µs)

INSTRUCTIONSKIP_32

Characterization

Target Specific Fault Models Generation

(x=12µm, y=10µm, delay=10µs) INSTRUCTIONSKIP_32

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 7

FAULT MODEL INFERENCE

 CHARACTERIZATION & TEST PROGRAM
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

Faulty outputs

000068BE 00007A2C

Fault injection settings

(x=12µm, y=10µm, delay=10µs)

Characterization

• Find fault injection settings

• Use test program

• Easier to propagate errors

• Generate more faulty outputs

• Main assumption

• Faults do not depend on the executed code

• Faults depend on the fault injection settings

 Same fault model for different applications

 Characterization results are transferable from sample to sample

INIT(); # initialize registers
TRIGGER_IO(); # easier synchro
ADD R0, R0, #2
ADD R1, R1, #3
ADD R2, R2, #5
… # several times
SEND_RESULT(); # send result to PC

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 8

FAULT MODEL INFERENCE

 CHARACTERIZATION & RESULTS
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

Faulty outputs

000068BE 00007A2C

Fault injection settings

(x=12µm, y=10µm, delay=10µs)

Characterization

• ~50,000 fault injection settings tested in 6 hours

• ~12,000 faulty outputs

• Laser Fault injection:

• Fixed power, fixed pulse duration

• Variable delay, variable positions

• Try to find different fault models using different positions

• Some area more sensitives

• Some faults do not depend on the injection delay

 do not depend on the instruction executed.

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 9

Fault Injection Simulation

FAULT MODEL INFERENCE

 FAULT INJECTION SIMULATION
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

Faulty outputs

000068BE 00007A2C

ISA Fault Models

INSTRUCTIONSKIP_32

• CELTIC, a simulation-based fault injection tool at binary level

• CELTIC simulates ISA fault models:

• “A fault that jumps eight 32-bit instructions”  PC = PC + 32  INSTRUCTIONSKIP_32

• Database generation with faulty outputs based on known fault models

• Same test program

• Emulation of the target architecture using CELTIC

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 10

Fault Injection Simulation

FAULT MODEL INFERENCE

 FAULT INJECTION SIMULATION & RESULTS
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

Faulty outputs

000068BE 00007A2C

ISA Fault Models

INSTRUCTIONSKIP_32

• Simulation of instruction jumps and opcode bit flips

• ~100 fault models

• 5 min simulation

• 50,000 faulty outputs

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 11

Fault Injection Simulation

FAULT MODEL INFERENCE

 TSFM GENERATION
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

Faulty outputs

000068BE 00007A2C

Fault injection settings

Faulty outputs

000068BE 00007A2C

ISA Fault Models

(x=12µm, y=10µm, delay=10µs)

INSTRUCTIONSKIP_32

Characterization

Target Specific Fault Models Generation

(x=12µm, y=10µm, delay=10µs) INSTRUCTIONSKIP_32

Faults should

not depend on

injection delay

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 12

• ~12,000 faulty outputs

• ~9,000 faulty outputs covered

• Faulty output coverage rate is around 74%

• The most probable fault models are instruction jumps (94% of the fault models found)

• Not a surprise  Fault in Flash Memory

FAULT MODEL INFERENCE

 DO WE FIND ALL THE FAULT MODELS ?
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

Covered
74%

Not
Covered

26%

Faulty Outputs Coverage

50%
34%

10%

6%

Fault Models Inferred

INSTRUCTIONSKIP_16

INSTRUCTIONSKIP_48

INSTRUCTIONSKIP_32

Other Fault Models

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 13

FAULT ANALYSIS

 SELECTION MOST PROBABLE TSFM
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

Fault Analysis

Most Probable TSFM

TSFM

TSFM
TSFM

INSTRUCTIONSKIP_32 x=12µm, y=10µm 0,65

• Keep the most probable TSFM

• Max the probability Pr 𝑀 = 𝑚 𝑠

• Advantages:

• Increase attack exploitation

success rate

• Reduce combinatorial explosion

of the fault analysis

𝑷𝒓 𝑴 = 𝒎 𝒔

Successful Attacks

g_authenticated = 0xAA

Oracle

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 14

FAULT ANALYSIS

 FIND SUCCESSFUL ATTACKS
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

Fault Analysis

Successful Attacks

Most Probable TSFM

TSFM

TSFM
TSFM

INSTRUCTIONSKIP_32 x=12µm, y=10µm 0,65

g_authenticated = 0xAA

• CELTIC simulates selected fault

models

• Target application

• Set an oracle  Victory

Conditions

• Find successful attacks

Oracle

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 15

• Combined fault attacks using 2 lasers.

• Laser Fault Injection with 2 laser sources

• Independent IR Lasers

• Different positions

• Different injection delays

• Same power

• Same pulse duration

• Lens x20

• The field of view limits fault models we can do

FAULT EXPLOITATION

 SETUP & POSITIONS

FI Control
Station

CouplerLaser diode 1 Laser diode 2

Trigger Trigger

Serial

Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 16

Laser Fault model Positions Pr(𝑀 = 𝑚|𝑠)

Laser 1 INSTRUCTIONSKIP_48 X=1050 µm, Y=1270 µm 0,72

Laser 2 INSTRUCTIONSKIP_32 X=1060 µm, Y=1240 µm 0,68

• Combined fault attacks using 2 lasers.

• Laser Fault Injection with 2 laser sources

• Independent IR Lasers

• Different positions

• Different injection delays

• Same power

• Same pulse duration

• Lens x20

• The field of view limits fault models we can do

FAULT EXPLOITATION

 SETUP & POSITIONS
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 17

• CELTIC find injection delays in clock cycle

• We want injection delay in µs rather than in clock cycle

• Conversion with a linear relationship

• Mitigation of potential inaccuracies:

• Target synchronization

• CELTIC doesn’t simulate pipeline stage

• ISA models are less accurate than RTL models

• Margin of error

• In this example 10 clock cycles

FAULT EXPLOITATION

 INJECTION DELAYS
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 18

• CELTIC find injection delays in clock cycle

• We want injection delay in µs rather than in clock cycle

• Conversion with a linear relationship

• Mitigation of potential inaccuracies:

• Target synchronization

• CELTIC doesn’t simulate pipeline stage

• ISA models are less accurate than RTL models

• Margin of error

• In this example 10 clock cycles

FAULT EXPLOITATION

 INJECTION DELAYS
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 19

• Comparison between exhaustive search and our approach.

• Exhaustive search on injection delays configuration:

• 1st laser  INSTRUCTIONSKIP_48

• 2nd laser  INSTRUCTIONSKIP_32

• During 1 week

• Pros:

• We find ~900 attacks out of ~1800 possible (50%).

• We identify the triangular patterns

• Cons:

• Still miss 50% of the possible attacks

• We have also false positives

FAULT EXPLOITATION

 DO WE FIND ALL THE FAULT ATTACKS ?
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 20

• Comparison between 3 approaches:

• Approach A : Naïve approach  exhaustive search

• Approach B : Hybrid approach  characterization only

• Approach C : Our approach

• Goals

• Authenticated with an incorrect PIN

• without triggering any countermeasure

• in a minimum of trial

• 100 times in a row.

FAULT EXPLOITATION

 IS OUR APPROACH THE FASTEST ?
Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 21

• Naive approach (Approach A) did not pass the experiment within a reasonable time.

• Our approach (Approach C) is 3 times faster on average than characterization only (Approach B)

• The VerifyPIN is a short program (~200 clock cycles),

 Elapsed time difference could be bigger on a longer program

FAULT EXPLOITATION

 IS OUR APPROACH THE FASTEST ?

B C

Avg Trials 1466 453

Avg Elapsed Time 13min58sec 4min18sec

Max Elapsed Time 2h35min59sec 31min04s

Tool-assisted Fault

Models Inference

Tool-assisted Fault

Exploitation

Tool-assisted Fault

Analysis

1 2 3

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

| 22

• We have presented the whole methodology step by step

• We have find multi-fault attacks with different fault models

• Complex fault attacks

• Difficult to find them without proper methodology

• Our approach is 3 times faster on average than characterization only to find combined fault attacks

on a VerifyPIN

• Further Work:

• Test different target devices and target applications

• Test different fault injection techniques

CONCLUSION

JAIF 2020 | Vincent Werner Laurent Maingault Marie-Laure Potet | 24/09/2020

Leti, technology research institute

Commissariat à l’énergie atomique et aux énergies alternatives

Minatec Campus | 17 avenue des Martyrs | 38054 Grenoble Cedex | France

www.leti-cea.com

Questions ?

This work is supported by the French National Research Agency in the framework of the ”Investissements d’avenir” program (ANR-15-IDEX-02 and ANR-10-AIRT-05).

