Introductio I ification of a vulnerability loitatio a blackbox

Clément Gainel, Driss Aboulkassimil, Simon Pontié!, Jean-Pierre Nikolovski!,
Jean-Max Dutertre?

LUniv. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
2Mines Saint-Etienne, CEA-Tech, Centre CMP, Departement SAS, F-13541 Gardanne France

JAIF'2021, September 23, 2021, Paris

1/25

Complex SoC-type target vulnerability to physical attacks

-Mobile phones contain a large amount of personal data
-Observation attacks - Side-channel [Aboulkassimi et al., 2011, Leignac et al.,]
-Perturbation attacks - Fault injection:

o Laser [Vasselle et al., 2017]

o Voltage [Timmers and Mune, 2017]

o Clock-based [Tang et al., 2017]

o EM [Majéric et al., 2016, Proy et al., 2019, Trouchkine et al., 2019]

2/25

Complex SoC-type versus microcontroller

- Complex hardware architecture (cache memory, CPUs, ...)
- Complex software layer (OS, ...)

- High operating frequencies (>1GHz)

- Large silicon area with a small technology node

- More security features (TrustZone, TEE, ...)

New topic, mostly on academic targets.

3/25

Complex SoC-type versus microcontroller

- Complex hardware architecture (cache memory, CPUs, ...)
- Complex software layer (OS, ...)

- High operating frequencies (>1GHz)

- Large silicon area with a small technology node

- More security features (TrustZone, TEE, ...)

New topic, mostly on academic targets.

.

EMFI on SoC for forensic[Gaine et al., 2020] - ExFiles Project?

?https://exfiles.eu/

u
2,

N

o

Q Introduction

O Experimental setup

© Physical vulnerability analysis of SoC under test
@ Vulnerability exploitation: privilege escalation
© Towards a blackbox

QO Conclusion

4/25

Raspberry Pi Pulse generator

Control Unit
ontro ni Iﬁ,—‘< .

UART

<>

Motorized {,
XYZ Stages"

Quad core
Cortex A53

14

Development board b .

v

5/25

Raspberry Pi Pulse generator
Control Unit S e e

UART

- >

Motorized {,
’ XYZ Stages"

Quad core
Cortex A53

14

Development board b.

Targeted Soc

64-bit 4-core SoC

Operating frequency up to 1.2GHz
Linux OS

y.
5/25

®00000

How to inject faults?

-Characterization step: running a chosen test
-When to inject?
-Where to inject?

6/25

[o] lelejele}

Challenge 1: time synchronization

-High operating speed requires a higher resolution time and accuracy
-Hardware and software complexity
-Many uncontrollable desynchronization sources (50ns jitter)

7/25

[o] lelejele}

Challenge 1: time synchronization

-High operating speed requires a higher resolution time and accuracy
-Hardware and software complexity
-Many uncontrollable desynchronization sources (50ns jitter)

.

Searching efficient delay for fault injection : Based on Side-Channel Analysis

Simple ElectroMagnetic Analysis used to identify the timing

EM measurement from target
B 1 1

L
i | NOP | | Tiigger Do
10 Trigger Up) Code Under Test Nop 99 1

EM variations (in mV)
°
Trigger (in V)

—— Trigger
—— EM variations

-1 0 1 2 3 4 5 6
Time (in ps)

>
7/25

00e000

Code Under Test
A 320 instructions code de relax synchronization constraints

//Initialization x28 = 368 = 0x170

mov x28, #0170

//Following sequences repeated 32 times

sub x19, x28, #0x1 These are 320 instructions
sub x20, x19, #0x1

sub x21, x20, #0x1

-> i.e. 270ns

sub x28, x27, #0x1

8/25

00e000

Code Under Test
A 320 instructions code de relax synchronization constraints

//Initialization x28 = 368 = 0x170

mov x28, #0170

//Following sequences repeated 32 times
sub x19, x28, #0x1

sub x20, x19, #0x1

sub x21, x20, #0x1

The EM perturbation effect

sub x28, x27, #0x1 is seen at readback

8/25

[eJele] Jele}

Challenge 2: Spatial resolution

-Large area to explore
-Small technological node (28nm)
-Active CPU executing the code is unknow

9/25

[eJele] Jele}

Challenge 2: Spatial resolution

-Large area to explore
-Small technological node (28nm)
-Active CPU executing the code is unknow

Searching efficient probe location (X,Y) for fault injection

Force the program to run on one CPU only
Scan with a 750um probe diameter
Pulse voltage at maximum, then reduce the voltage when a sensitive area is identified

9/25

0000e0

Localization of EMFI-sensitive areas

10725

0000e0

Localization of EMFI-sensitive areas

0000e0

Localization of EMFI-sensitive areas

Y in mm

0000e0

Results, Code with registers

5.0
No fault
40 Succeed
Il Crash

3.0 1

204 I h}mm
esifin: "
i;- .
y o

1.0 A i

0.0 1.0 20 30 40 50 6.0
Xin mm

10/25

O0000e

Result Analysis

Occurrences Result (x19, ..., x28) Occ. rate Timing (in ns)
27287 39,38,37,36,35,34,33,32,31,30 | 71.0% 1600 - 1900
5314 Communication lost 13.8% 1600 - 1900
4899 43,42,41,40,3F,3E,3D,3C,3B,3A | 12.7% 1650 - 1890
48 39,38,37,36,35,3E,3D,3C,3B,3A | 0.1% 1900

28 39,42,41,40,3F,3E,3D,3C,3B,3A | 0.1% 1900

Fault model identification
Instruction skip

11/25

Starting point

We know how to inject fault
We identified a fault model

12/25

Starting point

We know how to inject fault
We identified a fault model

.

How to elevate privileges?

Hypothesis: User access without root password
su command of Linux -> From unprivileged user to root

12/25

Flag setuid => starts with admnistrator rights.
- Authentication succeed -> root console. Otherwise -> user console.

/—\Lil}apam_unix
\—/unix_verify_password

su

13/25

Flag setuid => starts with admnistrator rights.
- Authentication succeed -> root console. Otherwise -> user console.

/\Lil}gpam_unix
\ unix_ verify password
-

su

Attack path 1 - Change libpam return to su

libpam is protected against Brute Force and Side-Channel Analysis (random time)
We aim for a nanosecond in a 1.5s interval

13/25

Flag setuid => starts with admnistrator rights.
- Authentication succeed -> root console. Otherwise -> user console.

/\
/_\Lil;pam_unix glibc
\></unix_verify_password stremp

\/

su

Attack path 1 - Change libpam return to su

libpam is protected against Brute Force and Side-Channel Analysis (random time)
We aim for a nanosecond in a 1.5s interval

Attack path 2 - strcmp control flow

Checks the validity of the password provided by unix verify password

Compare the hashes of the entered and stored password bytes by bytes I

Hashes compared by strcmp

o $63w\WxFc|tJdeOl05|KNOSIAAh|w8Th... -> Hash of "root" = root password

o $63w\WxFc|tJdeOl05|KNOS$Uung|4U7s... -> Hash of "fail" = test password
word 1 | word 2 | word 3 | word ...

14/25

Comparison of two hashes by strcmp

L(loop_misaligned) :

Tldr
ldr
sub
orr
eor

datal, [srcill]l, #8

data2, [src2], #8

tmpl, datal, zeroomnes

tmp2, datal, #REP8_T7f

diff, datal, data2 /*Non-zero if differences found.x*/

bic has_nul, tmpl, tmp2 /*Non-zero if NUL terminator.*/
orr syndrome, diff, has_nul
cbz syndrome, L(loop_misaligned)

b L(end)

15/25

Comparison of two hashes by strcmp

L(loop_misaligned) :

Tldr
ldr
sub
orr
eor

1st round
datal, [srcill, #8 //$6%ulxFc
data2, [src2], #8 //$6%ulxFc
tmpl, datal, zeroomnes
tmp2, datal, #REP8_T7f
diff, datal, data2 /*Non-zero if differences found.x*/

bic has_nul, tmpl, tmp2 /*Non-zero if NUL terminator.*/

orr syndrome, diff, has_nul

cbz syndrome, L(loop_misaligned) //continue the comparison
b L(end)

15/25

Comparison of two hashes by strcmp

L(loop_misaligned) :

Tldr
ldr
sub
orr
eor

2nd round
datal, [srcill, #8 //tJde0IO05
data2, [src2], #8 //tJde0IO05
tmpl, datal, zeroomnes
tmp2, datal, #REP8_T7f
diff, datal, data2 /*Non-zero if differences found.x*/

bic has_nul, tmpl, tmp2 /*Non-zero if NUL terminator.*/

orr syndrome, diff, has_nul

cbz syndrome, L(loop_misaligned) //continue the comparison
b L(end)

15/25

Comparison of two hashes by strcmp

L(loop_misaligned) :

Tldr
ldr
sub
orr
eor

3rd round
datal, [srcl], #8 //KNO$IAAh
data2, [src2], #8 //KNO$Uung
tmpl, datal, zeroomnes
tmp2, datal, #REP8_T7f
diff, datal, data2 /*Non-zero if differences found.x*/

bic has_nul, tmpl, tmp2 /*Non-zero if NUL terminator.*/
orr syndrome, diff, has_nul
cbz syndrome, L(loop_misaligned) //stop the comparison

b L(end)

15/25

Comparison of two hashes by strcmp

L(loop_misaligned):

I

ldr

ldr
sub
orr
eor
bic
orr

chz
b L(end)

datal, [srcil], #8

data2, [src2], #8

tmpl, datal, zeroones . . .
tmp2, datal, #REP8_T* EMFI during 1st or 2nd cbz instruction
diff, datal, data2 don-zero if differences found.*/
has_nul, tmpl, tmp2 “/*Non-zero if NUL terminator.x*/
syndrome , diff, has_.iul

syndrome, L(loop_misaligned)

15/25

Comparison of two hashes by strcmp

L(loop_misaligned):
Tldr datal, [srcil], #8

ldr data2, [src2], #8

sub tmpl, datal, zeroones . . .
orr tmp2, datal, #REP8_T7# EMFI during 1st or 2nd cbz instruction
eor diff, datal, data2 don-zero if differences found.*/
bic has_nul, tmpl, tmp2 “/*Non-zero if NUL terminator.*/
orr syndrome, diff, has_.iul

L cbz syndrome, L(loop_misaligned)
b L(end)

21 success for 6,000 tests -> 1 success every 15 minutes

15/25

@®00000

Blackbox exploitation issues

- Choice of a CPU
- Choice of a frequency
- Trigger for synchronization

A new code under test

Alloing to maximize the faults observable number
15% of fault to 60%

16/25

O®@0000

Different location for different CPU

Spatial mapping by CPU

Yin pm

-2500

-1500

1500 4

2500 -

-2500

-1500

-500

500
Xin um

1500

2500

100

0
100

0
100

0
100

N

17/25

00Oe@000

Photo-emission

- Operation of an IC generates infrared photons via
the rear side

- Loop code on one CPU

- Capture and analysis of these emissions via an IR

camera

~ABN VYA

T AON VU1V

Photoemission optical bench from Alphanov

18/25

[elefe] lele]

Spatial mapping by CPU

Yin pm

-1500

-500 -

500 -

1500 q

2500 -

-2500

-1500

-500

500
Xin um

1500

2500

100

0
100

100

100

19/25

[elefe] lele]

Spatial mapping by CPU 100
-1500 +
0
100
-500 -
3 o 0
£ 100
> 5001
1500 0
100
2500 A
25‘00 —15‘00 7560 5(‘)0 15‘00 25‘00
Xin um
v
3/4 CPU are faultable, with different success rates J

19/25

[elefele] Je]

Different frequencies

Frequencies change

300 1200MHz
1152MHz
1094MHz
998MHz
800MHz
533MHz
400MHz

200MHz - 200 and 400 MHz = No fault
- >b33MHz = Fault

N
a
o

ARRRERN

N
=}
S

=
o
S

Number of Instruction Jump
=
G
)

o
=}

0 100 200 300 400 500 600
Delay (in ns)

.

20/25

[elefele] Je]

Different frequencies

Frequencies change
300 { — 1200MHz
—— 1152MHz
—— 1094MHz
2501 — 998MHz
g —— 800MHz
2 00] — 533MHz
s 400MHz
g | — 200mz - 200 and 400 MHz = No fault
@ 150
s - >533MHz = Fault
£ 100
E
=4
50
0
0 100 200 300 400 500 600
Delay (in ns)
y

Possible to fault at different frequencies, by adapting the EM pulse delay. .-

0O0000e

Development board with GPIO trigger I

Perspectives

Use of a fake usb keyboard to enter a password
-> Jitter >5 ms = several weeks of campaign

Tool to improve the synchronization
-> EM fields emitted by the processor 7

21/25

2y blackbo;

-SoCs are sensitive to EMFI

22/25

a blackbo:

-SoCs are sensitive to EMFI
-Method for successful EMFI on SoC

22/25

Introduction

-SoCs are sensitive to EMFI
-Method for successful EMFI on SoC
-Exploitation case in bypassing the root privilege protection

22/25

23/25

B
B
B
[
B
[
[

ElectroMagnetic analysis (EMA) of software AES on Java mobile phones.

Electromagnetic Fault Injection as a New Forensic Approach for SoCs.

Comparison of side-channel leakage on rich and trusted execution environments.

Electromagnetic security tests for SoC.

Studying EM Pulse Effects on Superscalar Microarchitectures at ISA Level.

CLKSCREW: Exposing the perils of security-oblivious energy management.

Escalating Privileges in Linux Using Voltage Fault Injection.

24/25

B
[

Electromagnetic fault injection against a System-on-Chip, toward new micro-architectural fault models.

Laser-Induced Fault Injection on Smartphone Bypassing the Secure Boot.

25/25

	Introduction
	

	Experimental setup
	

	Physical vulnerability analysis of SoC under test
	

	Vulnerability exploitation: privilege escalation
	

	Towards a blackbox
	

	Conclusion
	

