Introduction	Setup	Identification of a vulnerability	Exploitation	Towards a blackbox	Conclusion

Electromagnetic Fault Injection on SoCs

Clément Gaine¹, Driss Aboulkassimi¹, Simon Pontié¹, Jean-Pierre Nikolovski¹, Jean-Max Dutertre²

¹Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France ²Mines Saint-Etienne, CEA-Tech, Centre CMP, Departement SAS, F-13541 Gardanne France

JAIF'2021, September 23, 2021, Paris

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	0000	000000	0000
State of t	he art				

Complex SoC-type target vulnerability to physical attacks

-Mobile phones contain a large amount of personal data

-Observation attacks - Side-channel [Aboulkassimi et al., 2011, Leignac et al.,]

-Perturbation attacks - Fault injection:

- Laser [Vasselle et al., 2017]
- Voltage [Timmers and Mune, 2017]
- Clock-based [Tang et al., 2017]
- EM [Majéric et al., 2016, Proy et al., 2019, Trouchkine et al., 2019]

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
0●0	0	000000	0000	000000	0000
		howmoh			

EMFI on complex target

Complex SoC-type versus microcontroller

- Complex hardware architecture (cache memory, CPUs, ...)
- Complex software layer (OS, ...)
- High operating frequencies (>1GHz)
- Large silicon area with a small technology node
- More security features (TrustZone, TEE, ...)

New topic, mostly on academic targets.

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
0●0	O	000000	0000	000000	0000

EMFI on complex target

Complex SoC-type versus microcontroller

- Complex hardware architecture (cache memory, CPUs, ...)
- Complex software layer (OS, ...)
- High operating frequencies (>1GHz)
- Large silicon area with a small technology node
- More security features (TrustZone, TEE, ...)

New topic, mostly on academic targets.

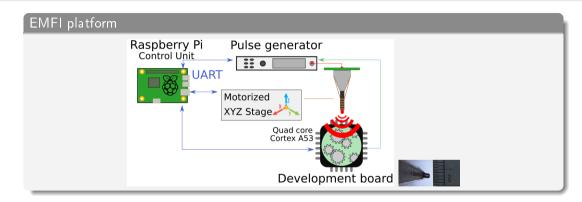
Use-case

EMFI on SoC for forensic[Gaine et al., 2020] - ExFiles Project^a

"https://exfiles.eu/

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
00●	0	000000	0000	000000	0000
Overview					

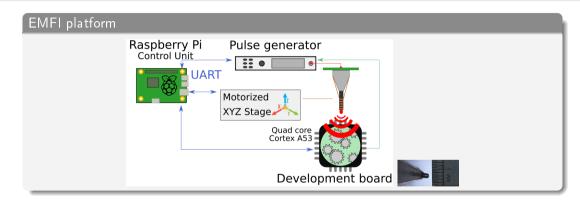
Introduction


- Experimental setup (2)
- Physical vulnerability analysis of SoC under test 3
- Vulnerability exploitation: privilege escalation

Towards a blackbox 6

Conclusion 6

Introduction	Set up	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000		000000	0000	000000	0000


EMFI platform and targeted SoC

 Introduction
 Setup
 Identification of a vulnerability
 Exploitation
 Towards a blackbox
 Conclusion

 000
 000000
 00000
 00000
 00000
 0000

EMFI platform and targeted SoC

Targeted Soc

64-bit 4-core SoC Operating frequency up to 1.2GHz Linux OS

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	O	●000000	0000	000000	0000
	т. — т.				

Physical vulnerability analysis of SoC under test

How to inject faults?

-Characterization step: running a chosen test-When to inject?-Where to inject?

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	O	o●oooo	0000	000000	0000
When to fi	ire?				

Challenge 1: time synchronization

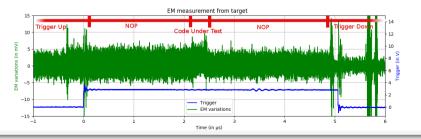
-High operating speed requires a higher resolution time and accuracy

-Hardware and software complexity

-Many uncontrollable desynchronization sources (50ns jitter)

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	0●0000	0000	000000	0000
When to f	ire?				

Challenge 1: time synchronization


-High operating speed requires a higher resolution time and accuracy

-Hardware and software complexity

-Many uncontrollable desynchronization sources (50ns jitter)

Searching efficient delay for fault injection : Based on Side-Channel Analysis

Simple ElectroMagnetic Analysis used to identify the timing

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	00●000	0000	000000	0000
When to f	ire?				

Code Under Test

A 320 instructions code de relax synchronization constraints

```
//Initialization x28 = 368 = 0x170
mov x28, #0170
//Following sequences repeated 32 times
sub x19, x28, #0x1
sub x20, x19, #0x1
...
sub x21, x20, #0x1
...
sub x28, x27, #0x1
```

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	0000	000000	0000
When to f	ire?				

Code Under Test

A 320 instructions code de relax synchronization constraints

```
//Initialization x28 = 368 = 0x170
mov x28, #0170
//Following sequences repeated 32 times
sub x19, x28, #0x1
sub x20, x19, #0x1
...
sub x21, x20, #0x1
...
sub x28, x27, #0x1
is seen at readback
```

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000●00	0000	000000	0000
Where to t	fire?				

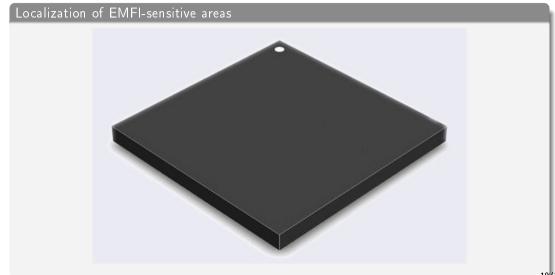
Challenge 2: Spatial resolution

-Large area to explore -Small technological node (28*nm*) -Active CPU executing the code is unknow

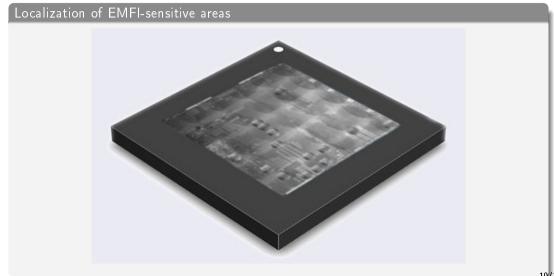
Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	O	000000	0000	000000	0000
Where to	fire?				

Challenge 2: Spatial resolution

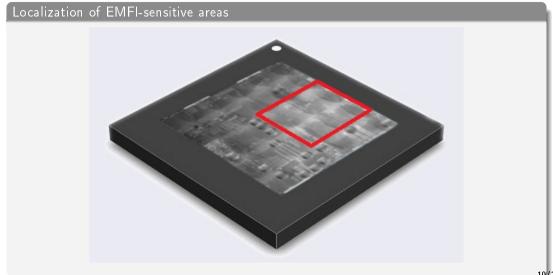
-Large area to explore -Small technological node (28*nm*) -Active CPU executing the code is unknow

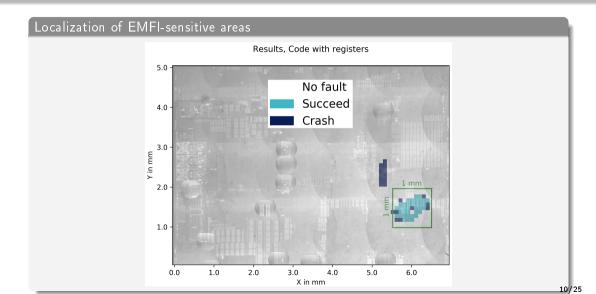

Searching efficient probe location (X,Y) for fault injection

Force the program to run on one CPU only


Scan with a 750 μm probe diameter

Pulse voltage at maximum, then reduce the voltage when a sensitive area is identified


Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	O	000000	0000	000000	0000
Where to	fire ?				


Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	0000	000000	0000
Where to	fire ?				

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	O	000000	0000	000000	0000
Where to	fire ?				

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	0000	000000	0000
Where to	fire ?				

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	00000●	0000	000000	0000
Results					

Result Analysis

Occurrences	Result (x19,, x28)	Occ. rate	Timing (in ns)
27287	39,38,37,36,35,34,33,32,31,30	71.0%	1600 - 1900
5314	Communication lost	13.8%	1600 - 1900
4899	43,42,41,40,3F,3E,3D,3C,3B,3A	12.7%	1650 - 1890
48	39,38,37,36,35,3E,3D,3C,3B,3A	0.1%	1900
28	39 ,42,41,40,3F,3E,3D,3C,3B,3A	0.1%	1900

Fault model identification

Instruction skip

Introduction	Setup	ldentification of a vulr	erability Exploitation	Towards a blackbox	Conclusion
000	O	000000	•000	000000	0000
	1.11		1		

Vulnerability exploitation: privilege escalation

Starting point

We know how to inject fault We identified a fault model

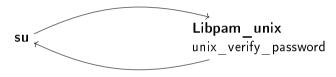
Introduction 000	Setup 0		Identification	of a vulnerability	Exploitation ●000	Towards a blackbox 000000	Conclusion 0000
N Z 1	1.010	1.1			1		

Vulnerability exploitation: privilege escalation

Starting point

We know how to inject fault We identified a fault model

How to elevate privileges?


Hypothesis: User access without root password su command of Linux -> From unprivileged user to root

Introduction	Setup 0	ldentification of a vulnerability 000000		Towards a blackbox 000000	Conclusion 0000
			- L		

Analyze the su code to identify an attack path

Flag setuid = starts with admnistrator rights.

- Authentication succeed -> root console. Otherwise -> user console.

Introduction	Setup	ldentification of a vulnerability		Towards a blackbox	Conclusion
000	O	000000		000000	0000
A		de la filmation de la sec	- L		

Analyze the su code to identify an attack path

Flag setuid => starts with admnistrator rights.

- Authentication succeed -> root console. Otherwise -> user console.

Attack path 1 - Change libpam return to su

libpam is protected against Brute Force and Side-Channel Analysis (random time) We aim for a nanosecond in a 1.5s interval

- Authentication succeed -> root console. Otherwise -> user console.

Attack path 1 - Change libpam return to su

libpam is protected against Brute Force and Side-Channel Analysis (random time) We aim for a nanosecond in a 1.5s interval

Attack path 2 - strcmp control flow

Checks the validity of the password provided by _unix_verify_password

Introduction	Setup	ldentification of a vulnerability	Towards a blackbox	Conclusion
000	O	000000	000000	0000
		1		

Analyze the strcmp code to identify an attack path

strcmp function

Compare the hashes of the entered and stored password bytes by bytes

Hashes compared by strcmp

- \$6\$wWxFc|tJdeOl05|KNO\$IAAh|w8Th... -> Hash of "root" = root password
- \$6\$wWxFc|tJdeOl05|KNO\$Uung|4U7s... -> Hash of "fail" = test password word 1 | word 2 | word 3 | word ...

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	000●	000000	0000

```
L(loop_misaligned):
  . . .
 ldr data1, [src1], #8
 ldr data2, [src2], #8
 sub tmp1, data1, zeroones
 orr tmp2, data1, #REP8 7f
 eor diff, data1, data2 /*Non-zero if differences found.*/
 bic has_nul, tmp1, tmp2 /*Non-zero if NUL terminator.*/
 orr syndrome, diff, has_nul
  cbz syndrome, L(loop_misaligned)
  b L(end)
```

Introduction 000	Setup 0		Towards a blackbox 000000	Conclusion 0000
-				

```
L(loop_misaligned):
                                              1st round
  . . .
 ldr data1, [src1], #8 //$6$wWxFc
 ldr data2, [src2], #8 //$6$wWxFc
  sub tmp1, data1, zeroones
  orr tmp2, data1, #REP8 7f
  eor diff, data1, data2 /*Non-zero if differences found.*/
  bic has_nul, tmp1, tmp2 /*Non-zero if NUL terminator.*/
  orr syndrome, diff, has_nul
  cbz syndrome, L(loop_misaligned) //continue the comparison
  b L(end)
```

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	000●	000000	0000
_					

```
L(loop_misaligned):
                                             2nd round
  . . .
 ldr data1, [src1], #8 //tJdeOI05
 ldr data2, [src2], #8 //tJde0I05
  sub tmp1, data1, zeroones
  orr tmp2, data1, #REP8 7f
  eor diff, data1, data2 /*Non-zero if differences found.*/
  bic has_nul, tmp1, tmp2 /*Non-zero if NUL terminator.*/
  orr syndrome, diff, has_nul
  cbz syndrome, L(loop_misaligned) //continue the comparison
  b L(end)
```

Introduction	Setup	ldentification of a vulnerability	Towards a blackbox	Conclusion
000	0	000000	000000	0000

```
L(loop_misaligned):
                                             3rd round
  . . .
 ldr data1, [src1], #8 //KNO$IAAh
 ldr data2, [src2], #8 //KNO$Uung
  sub tmp1, data1, zeroones
  orr tmp2, data1, #REP8 7f
  eor diff, data1, data2 /*Non-zero if differences found.*/
  bic has_nul, tmp1, tmp2 /*Non-zero if NUL terminator.*/
  orr syndrome, diff, has_nul
  cbz syndrome, L(loop_misaligned) //stop the comparison
  b L(end)
```

 Introduction
 Setup
 Identification of a vulnerability
 Exploitation
 Towards a blackbox
 Conclusion

 000
 0
 00000
 00000
 00000
 00000

Results and exploitation

```
Comparison of two hashes by strcmp
L(loop_misaligned):
   . . .
  ldr data1, [src1], #8
  ldr data2, [src2], #8
  sub tmp1, data1, zeroones
                                   EMFI during 1st or 2nd cbz instruction
  orr tmp2, data1, #REP8_7_
  eor diff, data1, data2 / Non-zero if differences found.*/
  bic has_nul, tmp1, tmp2 // Non-zero if NUL terminator.*/
  orr syndrome, diff, has ul
   cbz syndrome, L(loop_misaligned)
  b L(end)
```

Introduction	Setup	ldentification of a vulnerability	Towards a blackbox	Conclusion
000	0	000000	000000	0000

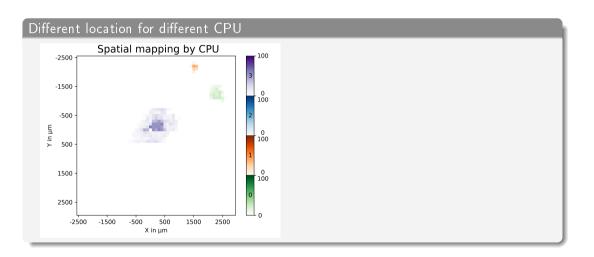
```
Comparison of two hashes by strcmp
L(loop_misaligned):
   . . .
  ldr data1, [src1], #8
  ldr data2, [src2], #8
  sub tmp1, data1, zeroones
                                   EMFI during 1st or 2nd cbz instruction
  orr tmp2, data1, #REP8_7_
  eor diff, data1, data2 / Non-zero if differences found.*/
  bic has_nul, tmp1, tmp2 // Non-zero if NUL terminator.*/
  orr syndrome, diff, has ul
  cbz syndrome, L(loop_misaligned)
  b L(end)
```

Results

21 success for 6,000 tests -> 1 success every 15 minutes

Introduction	Setup	ldentification of a vulnerability	Towards a blackbox	Conclusion
000	O	000000	●00000	0000
Towarda	blackbd			

Towards a blackbox


Blackbox exploitation issues

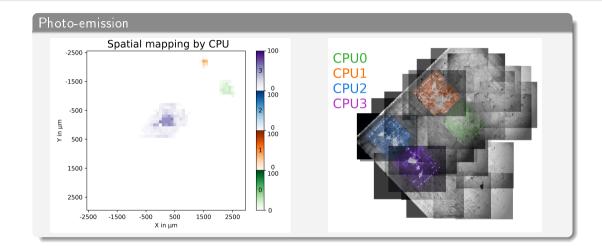
- Choice of a CPU
- Choice of a frequency
- Trigger for synchronization

A new code under test

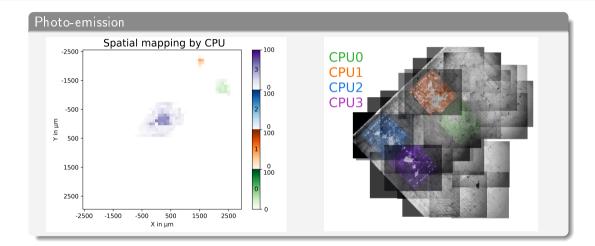
Alloing to maximize the faults observable number 15% of fault to 60%

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	0000	o●oooo	0000
Choice of	CPU				

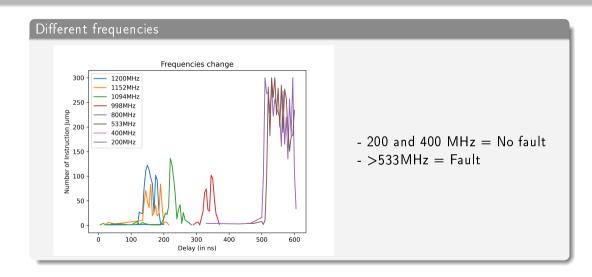
Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	0000	oo●ooo	0000
Choice of	CPU				


Photo-emission

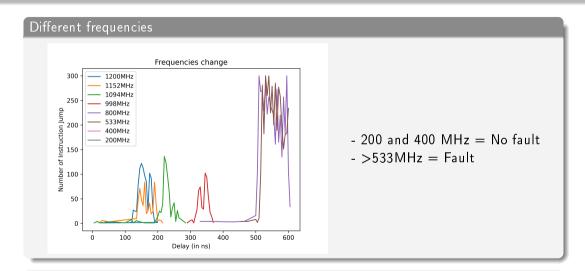
- Operation of an IC generates infrared photons via the rear side
- Loop code on one CPU
- Capture and analysis of these emissions via an IR camera


Photoemission optical bench from Alphanov

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	O	000000	0000	000000	0000
Choice of	CPU				



Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	O	000000	0000	000●00	0000
Choice of	CPU				



3/4 CPU are faultable, with different success rates

Possible to fault at different frequencies, by adapting the EM pulse delay.

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	O	000000	0000	oooooo	0000
Synchroni	zation				

Currently

Development board with GPIO trigger

Perspectives

Use of a fake usb keyboard to enter a password -> Jitter >5 ms = several weeks of campaign

Tool to improve the synchronization -> EM fields emitted by the processor ?

Introduction	Setup	Identification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	0000	000000	0000
Conclusion					

-SoCs are sensitive to EMFI

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	0000	000000	0000
Conclusion					

-SoCs are sensitive to EMFI -Method for successful EMFI on SoC

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	0000	000000	0000
Conclusion					

-SoCs are sensitive to EMFI -Method for successful EMFI on SoC -Exploitation case in bypassing the root privilege protection

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	O	000000	0000	000000	0●00
Questions	?				

Introduction	Setup O	Identification of a vulnerability 000000	Exploitation 0000	Towards a blackbox 000000	Conclusion 000●	
Refere	nces					
		oyan, M., Freund, L., Fournier, J., Robisso rsis (EMA) of software AES on Java mobi		1).		
	Gaine, C., Aboulkassimi, D., Pontié, S., Nikolovski, Jp., and Dutertre, Jm. (2020). Electromagnetic Fault Injection as a New Forensic Approach for SoCs.					
	Leignac, P., Potin, O., Rigaux, JB., Dutertre, JM., and Pontie, S. Comparison of side-channel leakage on rich and trusted execution environments.					
	Majéric, F., Bourbao, Electromagnetic secur ICECS 2016.	E., and Bossuet, L. (2016). ity tests for SoC.				
	Studying EM Pulse E	K., Berzati, A., Majéric, F., and Cohen, / ffects on Superscalar Microarchitectures at inference Proceeding Series.				
		avan, S., and Stolfo, S. (2017). g the perils of security-oblivious energy m	an agement.			
		ne, C. (2017). n Linux Using Voltage Fault Injection. Folerance in Cryptography, FDTC.				

Introduction	Setup	ldentification of a vulnerability	Exploitation	Towards a blackbox	Conclusion
000	0	000000	0000	000000	00●●
Reference	es				

Trouchkine, T., Bukasa, S. K., Escouteloup, M., Lashermes, R., and Bouffard, G. (2019).

Electromagnetic fault injection against a System-on-Chip, toward new micro-architectural fault models.

Vasselle, A., Thiebeauld, H., Maouhoub, Q., Morisset, A., and Ermeneux, S. (2017).

Laser-Induced Fault Injection on Smartphone Bypassing the Secure Boot.

Fault Diagnosis and Tolerance in Cryptography, FDTC.