
Software fault injection for
SecSwift qualification

Hervé Chauvet - François de Ferrière - Thomas Bizet

ST Grenoble – Compilers and Computing Center

September 23, 2021

Summary

1 Context

2 Software Faults

3 Simulation & Fault Injection

4 Results

5
Countermeasure
Improvements

6 Perspectives

7

2

Conclusion

Context

• Software security extension to LLVM

• A software countermeasures module developed in ST ports of the LLVM compiler

• Named SecSwift for Secure Swift

SWIFT : Software Implemented Fault Tolerance

G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, D.J. August – CGO 2005

• Supported architectures

• ARM

• STxP5 (RISC-V): under development

• Other proprietary processors

• The overall objective is to replace hand-written countermeasures by automatic

generation in the compiler

• Let the user control which protections to activate and where

• Let the compiler do the tedious work

Context

4

• Full integration with the LLVM compiler

• No constraints on compilation options

• -Oz, -O2, -O3, -flto levels are fully supported

• Security code is guaranteed to be preserved by the compiler

• Security code is efficiently compiled and mixed with application code

• Need for a fault-injection tool

• Validate SecSwift’s countermeasures effectiveness

• Provide a way to qualify an application protected with SecSwift

• Will be used for continuous integration of SecSwift developments

• Fault model

• SecSwift protections support single-fault model

Context

5

Software Faults

• Our tool can inject several kinds of software faults

1. Conditional branch inversion
BNE -> BEQ, BLE -> BGT, ….

2. Instruction skip
PC += 4

3. Instruction re-execution
PC -= 4

4. Register value modification
Reg = 0x0, 0xffffffff (-1); 0xffffff80 (-128) for alignment purposes

Reg = Reg xor (1<<n)

• Register value modifications on load & store operations simulate injections on memory

• Limitations

• Can only apply to registers and instructions

• Mimics the effects of physical faults & their consequences

Software Faults

7

• Fault types used to evaluate SecSwift countermeasures

Software Faults

8

SecSwift countermeasures
Branch

inversion

Instruction

skip
Instruction

re-execution

Register

injection

Control-flow integrity ✓ ✓ ✓

Data-flow duplication ✓ ✓ ✓

Memory duplication

(global variables & aggregate members) ✓

Simulation & Fault Injection

• The qualification process is implemented as two independent steps:

• Advantages:
• After the collection step, the number of faults to be injected is known:

-> The time required to perform fault injection can be easily approximated.

-> Resources and parallelism degree for the injection step can be adjusted

• Fault injection tasks can be easily distributed over a pool of processes or machines.

• Drawbacks:
• Execution traces can be very large, up to tens of Gigabytes

Qualification steps

10

Collection step Injection step

Collect the set of
faults to inject

Perform fault
injectionSet of faults

1. Execution of the program and generation of an execution trace

• Can be reduced to a list of functions or range of addresses

2. Parsing of the execution trace to create a set of faults to be injected

➔Each selected fault kinds is applied to each instruction

Input/output registers, opcode of the instruction

➔An instruction will be targeted as many time it is executed

3. Write down a JSON file that contains the list of faults to be injected

(Address, Occurrence, Fault)

Collection step

11

• Number of injected faults

• On real applications

Collection step

12

Fault Kind Number of fault Injections

Branch Inversion One fault injection for each branch instruction

Instruction Skip One fault injection for each instruction

Instruction re-execution One fault injection for each instruction

Register value modification One fault injection for each input register and for each injected value

Program Number of collected

fault injections

Execution time

Summin 380 000 20s

Coremark 550 000 1min

Stanford 1 150 000 ~ 6min

• Processing of one fault injection

• A GDB session is initiated and attached to a simulated execution of the program

• A fault injection Python script is executed under GDB:

• Set a breakpoint in the program at the fault injection address.

• Start the program execution until the occurrence of the breakpoint is reached.

• Perform the fault injection action via GDB

• Resume the program execution

• Classify the result of the fault injection

Fault Injection Step

13

Classification Effects

Successful attack
• Program’s behavior or correctness has been modified
• The fault has not been detected by SecSwift countermeasures

Fault detected • The fault triggered SecSwift countermeasures

Correct execution
• Program’s behavior/correctness has not been modified
• The fault has not been detected

Unexpected execution • The fault injection caused a crash or modified the execution of the program

Timeout • The program did not terminate in time and had to be interrupted

Fault injection execution

14

One computer Linux Computer Farm

One supervisor process distributes fault injection

tasks to a pool of N fault injection processes

One supervisor process starts K distributed jobs that

each execute N fault injection processes

Reduces the fault injection time by a factor of ~ N

(limited by the number of cores on the computer)

Reduces the fault injection time by a factor of ~ K * N

(K = 30 and N = 8 for our experiments)

Allows to qualify small to medium size applications. Can easily be used to qualify applications of a few

thousand lines

• For a program with an execution time of 0.6s:

• Can perform about 6 000 fault injections per hour on one core

• About 1.5 million of fault injections per hour on a farm of 30 machines with 8 cores each

• Can qualify applications of a few hundred lines of code within a few hours

• A time budget can be given to partially qualify larger application

• Fault injections are picked at random from the list of fault injections

Results

Results

16

• Number of faults of each type for a given program

• Rate of successful attacks

Program (ARM) Targeted instructions Branch inversions Skips & re-executions Register injections

Coremark 7 256 570 7 256 33 906

Quicksort 10 625 1 665 10 625 45 627

Pstone/summin 66 203 8 197 66 203 245 481

Stanford 211 235 26 148 211 235 884 904

Fault type
Successful attacks

without protections

Successful attacks

with SecSwift protections

Branch inversion 99 % 0 %

Instruction skip &

re-execution
70 % 0.3 %

Register injection 50 % 0.5 %

Countermeasure improvements

• The analysis of the “Successful Attacks” cases resulted in the identification of

weaknesses in the SecSwift protections:

• Use of the XOR operator for control-flow integrity checking

• Missing duplication of instructions to build immediate values

• Weakness in the checking of stored value

• Skip of the last branch instruction of a function

• Other “Successful Attacks” cases have yet to be analyzed

Countermeasure improvements

18

• XOR operator for control-flow integrity

checking

• Undetected fault on

a loop where the trip

count was increased

by an even number

• XOR is now replaced

by a combination of

add/sub operations

Countermeasure improvements

19

Loop: // SigL

GSR = GSR  RTS;

<side effect free expressions>

I++; Idup++;

RTS = SigL (Idup < 2 ? SigL : SigE);

if (I < 2) goto loop;

EndLoop: // SigE

GSR = GSR  RTS;

assert(GSR == SigE);

Loop: // iteration 2

GSR = GSR  RTS;

<side effect free expressions>

I++; Idup++;

RTS = SigL  (2 < 2 ? … : SigE);

if (0 < 2) goto loop;

GSR = SigL

I = 2;I = 0; Idup = 2;

RTS = SigL  SigE

goto loop

Loop: // iteration 3

GSR = GSR  RTS;

<side effect free expressions>

I++; Idup++;

RTS = SigL  (3 < 2 ? … : SigE);

if (1 < 2) goto loop;

GSR = SigE

I = 1; Idup = 3;

RTS = SigL  SigE

goto loop

Loop: // iteration 4

GSR = GSR  RTS;

<side effect free expressions>

I++; Idup++;

RTS = SigL  (4 < 2 ? … : SigE);

if (2 < 2)

GSR = SigL

I = 2; Idup = 4;

RTS = SigL  SigE

fallthrough

EndLoop:

GSR = GSR  RTS;

assert(GSR == SigE);

GSR = SigE

SigE == SigE

• Weaknesses in the SecSwift protection on store operations:

• A reload of the stored value is added

• The value must be compared against the duplicate of the stored value

• Also reported in :

• A compiler technique for near Zero Silent Data Corruption – M. Didehban, A. Shrivastava. DAC 2016

Countermeasure improvements

20

ADD R0, R0, #10 // duplicated computation-flow start

ADD R1, R1, #10 // R1 is duplicate of R0

….

CMP R0, R1

BNE trap // Attack on R0 here would not be detected

CMP R9, R10

BNE trap

STR R0, [R9]

ADD R0, R0, #10 // duplicated computation-flow start

ADD R1, R1, #10 // R1 is duplicate of R0

….

STR R0, [R9]

LDR R0, [R10] // R10 is duplicate of R9

CMP R0, R1

BNE trap

• Missing duplication of instructions to build an immediate value

• An intrinsic function is used in the compiler to force the generation of a duplicated constant

Countermeasure improvements

21

LLVM-IR:

%3 = add i32 6000, %1

%4 = add i32 6000, %2 // duplicated instruction

ARM generated code:

MOV R0, #6000

ADD R1, R1, R0

ADD R2, R2, R0 // duplicated instruction

LLVMIR:

%3 = add i32 6000, %1

%copy = call i32 @llvm.hiddencopy(i32 6000)

%4 = add i32 %copy, %2 // duplicated instruction

ARM generated code:

MOV R0, #6000

MOV R3, #6000 // intrinsic expansion

ADD R1, R1, R0

ADD R2, R2, R3 // duplicated instruction

• Missing protection at the entry of a control-flow protected region

• IPGSR is now statically initialized at program load time

• A check is added at the entry of the protected region

• We are still looking for a better fix for this case

Countermeasure improvements

22

global IPGSR

foo:

….

….

return

main:

IPGSR = InitValue // IPGSR has no context yet

global IPGSR = InitValue

foo:

….

….

return

main:

assert (IPGSR == InitValue);

Perspectives

• Bypass GDB interface to directly inject faults via the simulator/emulator

• Implement some hooks ?

• Enhance reporting of undetected faults to help for analysis/comparison

• Link vulnerable instructions to source code

• Study the possibility to implement a snapshot system that copies simulation states

in order to avoid re-executing the simulation from the beginning at each injection

Perspectives

24

Conclusion

• Fault injections scripts have reached a product level

• Used to validate SecSwift countermeasures

• Already spotted a few weaknesses in the implementation

• Some “successful attacks” still need to be analyzed

• Qualification should soon be performed on real applications for our internal

customers

Conclusion

26

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

Thank you

http://www.st.com/trademarks

