

INTEGRITY CHARACTERIZATION OF EMBEDDED NEURAL NETWORK AGAINST LASER FAULT INJECTION

Mathieu Dumont, Pierre Alain Moëllic, Kévin Hector, Jean-Max Dutertre

mathieu.dumont@cea.fr

09/11/2022

JAIF 2022

• Deployment of Machine Learning models in many IoT devices.

- Deployment of Machine Learning models in many IoT devices.
- Embedded Neural Networks offer physical access to an attacker.
- Ongoing standardization, regulation (European Al Act*), certification actions.

* https://artificialintelligenceact.eu/

- Context
- Setup and Fault Model
- Targeting the Model Integrity with Laser Fault Injection
- Guided Laser Fault Injection
- Conclusion

- Attack on machine learning models
- Adversarial Example (software attack) is a major threat against DNN. **Massive research efforts** on that field.

 Physical attacks (hardware attack) constitute new threats against DNN. Recent works.

Parameter-Based Attacks

> Typical neuron computation:

- Weight-based adversarial attacks
 - Most of works are API-based attacks, first Liu et al. (2017) [1].
 - Bit-Flip Attack (BFA) by Rakin *et al.* [2]:
 - Find the most sensitive bits to flip based on the loss gradient ranking of each bit $\nabla_b \mathcal{L}$
 - Decrease the model performance with few bit-flips

Bit-Flip Attack simulation (random-guess level = 10%)

Hardware Parameter-Based Attacks

		Target	Model (Dataset)	Quantization	Simu/Exp	DUT	Comments
\bigstar	Breier <i>et al. [3]</i>	Activation Function	MLP (MNIST)	No	Simulation / Laser	ATMega 328P	Target last hidden layer. Skip instruction
	Benevenuti <i>et al. [4]</i>	Whole model	MLP (IRIS)	No	Neutron irradiation / Laser	SRAM-Based FPGA	Safety-based.
\bigstar	Yao <i>et al.</i> [5]	Weights	CNN (MNIST, CIFAR10, ImageNet)	8-bit	BFA / RowHammer	Intel i7-3770 CPU (DRAM)	Random-guess level for 11 models with less than 20 bit-flips
	Liu <i>et al. [</i> 6]	Whole model (black-box)	CNNs (ImageNet)	8-bit	Clock Glitch	SoC (FPGA/ Cortex A53)	Black and gray box
	Fukuda <i>et al. [7]</i>	Softmax function	CNN (MNIST)	No	Clock Glitch	ATMega128	Only last layer implemented in C
\bigstar	Ours works	Weights	MLP (IRIS, MNIST)	8-bit	BFA / Laser	32-bit MCU, Cortex-M	White-box. Precise attack with minimum faults

- Context
- Setup and Fault Model
- Targeting the Model Integrity with Laser Fault Injection
- Guided Laser Fault Injection
- Conclusion

- Laser bench setup
 - Laser with two independent laser spots at 1064nm (near IR).
 - Target : ARM Cortex M3 running at 8MHz. CMOS 90nm.

2,5 mm

- Flash : 128kb NOR Flash
- Open backside

Bit-set fault model [8]

• Floating gate charged, low read current : $I_{READ} < I_{Ref} \rightarrow Read value : '0'$

Bit-set fault model [8]

One-way (unidirectional) fault model → Bit-set fault model

- Datasets and models
 - **IRIS Dataset :** small network, 4 inputs and 3 outputs
 - Only few neurons and one hidden layer is sufficient
 - **MNIST Dataset :** 28x28 digits images ('0',...'9')
 - MLP network, one deep layer of 10 neurons, ReLu activation

- MCU implementation
 - Need access to library \rightarrow NNoM
 - 8-bit quantization
 - White-box access to inference code

• During the multiplication (w_i^j, x_i) the load "ldr" instruction of the weight value is surrounded by a trigger

Part of C code of Weighted-sum computation during inference

- Context
- Setup and Fault Model
- Targeting the Model Integrity with Laser Fault Injection
- Guided Laser Fault Injection
- Conclusion

Laser fault injection characterization on Multi Layer Perceptron

- Iris model with one deep layer of 10 neurons (**40 weights** on the first layer).
- The laser spot move along the X-Axis of the flash memory (with a step of 2µm).
 - At each X-step, **50 inferences** are performed and outputs compared with software results to determine the embedded model accuracy.
 - During one inference, all weight loading ('ldr') trigger a laser shot.

- Accuracy of embedded model without attack = 95%
- Total number of bits = 320bits

Optical Lens x5 (Spot of 15µm) Pulse power : 170mW Pulse Width : 200 ns Delay : 500 ns Step on $X = 2\mu m$

- Laser fault injection characterization on Multi Layer Perceptron
 - LFI characterization limitation : Due to memory flash storage architecture, only **1/4** of all weights could be faulted during one inference.

- Laser fault injection characterization on Multi Layer Perceptron
 - LFI characterization limitation : Due to memory flash storage architecture, only **1/4** of all weights could be faulted during one inference.
 - With the two spots, 2 weights columns could be targeted, leading to **1/2** of the weights that be can faulted.

- Bi-spot Laser fault injection characterization on Multi Layer Perceptron
 - Both spots are moved together from 0 to 700µm for Spot1 (from 700 to 1400µm for Spot2) and shot at the same time.

<u>For both lens :</u> Optical Lens x5 (Spot of 15µm) Pulse power : 170mW Pulse Width : 200 ns Delay : 500 ns Step on X = 2µm

- Laser fault injection characterization on MNIST Model
 - Robustness evaluation of **MNIST** MLP 8-bit model. 50 neurons on the targeted layer.
 - Embedded accuracy : 96%
 - 500 weights are targeted. 100 inferences are performed at each X-position.

Maximal Accuracy drop = 22% Faults number average = 29 faults **(175mW)**

- Model precision can be significantly decrease on a deeper typical model.
- ✓ Drop of accuracy of 22% with 28 faults (0,6% of faulted bits)
- ✓ Brute-force attack strategy is limited.

Optical Lens x5 (Spot of 15µm) Pulse power : **140mW – 175mW** Pulse Width : 200 ns Delay : 930 ns Step on X = 2µm

- **Bi-spot Laser fault injection characterization on MNIST Model**
 - Same experiment with both spots on the MNIST Model.

<u>For both lens :</u> Optical Lens x5 (Spot of 15µm) Pulse power : ~170mW Pulse Width : 200 ns Delay : 930 ns Step on X = 2µm

- Context
- Setup and Fault Model
- Targeting the Model Integrity with Laser Fault Injection
- Guided Laser Fault Injection
- Conclusion

- Simulation BSCA : Bit-Set Constrained Attack
 - Based on BFA, the **most sensitive bits** of the model are identified.
 - To be experimentally evaluate, bits (previously identified by BFA) are sorted by weights columns and bit lines.
 - Adversarial budget is fixed to 20 bit-sets.
 - All bit-lines from one weight column are targeted in simulation.

Experimental BSCA : Bit-Set Constrained Attack

- Laser shot is triggered only for the **selected** 20 weights, depending on the chosen weight column/bit-line.
- We target the MSB of each of the 4 weight columns, by changing the laser X-position.

- Experimental BSCA : Bit-Set Constrained Attack
 - Laser shot is triggered only for the **selected** 20 weights, depending on the chosen weight column/bit-line.
 - We target the MSB of each of the 4 weight columns, by changing the laser X-position.
 - Focus on the MSB of the 2nd weight column.

- Experimental and simulation results are quite similar.
- ✓ 5 bit-sets (0,1% faulted bits) accuracy drops to 39%. 10 bits-sets : 24%.
- ✓ After 10 bit-sets accuracy not decrease
 → model level of robustness

- Context
- Setup and Fault Model
- Targeting the Model Integrity with Laser Fault Injection
- Guided Laser Fault Injection
- Conclusion

- Integrity evaluation of embedded neural network is still in its infancy.
 - Laser injection and bit-set fault model are powerful means to assess the **robustness** of an embedded model.
- First experimental characterization of weight-based adversarial attack with a laser fault injection.
- With **bi-spot laser** characterization, more weights can be faulted in the same inference.
- With the Bit-Set Constraint Attack we can **guide** the laser fault injection.
 - High accordance between simulation and practical results.
 - Only **few bits** are necessary to significantly decrease the model's accuracy.
- Basis for developing reliable evaluation methodology for future standardization and certification schemes of embedded Al-system.

- Robustness characterization on Convolutional Neural Network.
- Other attack vectors (Instructions, activation functions...).
- Evaluate state-of-the-art defense strategies against fault injection in a ML model context.
- Model reverse engineering with fault injection.

THANK YOU

JAIF 2022

INTEGRITY CHARACTERIZATION OF EMBEDDED NEURAL NETWORK AGAINST LASER FAULT INJECTION

Mathieu DUMONT // CEA LETI // mathieu.dumont@cea.fr

CEA-Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 avenue des Martyrs | 38054 Grenoble Cedex | France www.leti-cea.com

- [1] Y. Liu, L. Wei, B. Luo, and Q. Xu, *Fault injection attack on deep neural network*, IEEE/ACM International Conference on Computer- Aided Design, Digest of Technical Papers, ICCAD, 2017.
- [2] A. S. Rakin, Z. He, and D. Fan, *Bit-flip attack: Crushing neural network with progressive bit search,* in IEEE International Conference on Computer Vision, 2019.
- [3] J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y. Liu, *Practical fault attack on deep neural networks,* in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 2018.
- [4] F. Benevenuti, F. Libano, V. Pouget, F. L. Kastensmidt, and P. Rech, *Comparative analysis of inference errors in a neural network implemented in sram-based fpga induced by neutron irradiation and fault injection methods*, in 31st Symposium on Integrated Circuits and Systems Design SBCCI, 2018.
- [5] F. Yao, A. S. Rakin, and D. Fan, *DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips*. 29th USENIX Security Symposium, 2020.
- [6] W. Liu, C.-H. Chang, F. Zhang, and X. Lou, *Imperceptible misclassification attack on deep learning accelerator by glitch injection*, Design Automation Conference DAC, 2020.
- [7] Y. Fukuda, K. Yoshida, and T. Fujino, *Fault injection attacks utilizing waveform pattern matching against neural networks processing on microcontroller*, Transactions on Fundamentals of Electronics, Communications and Compute Sciences, 2022.
- [8] B. Colombier, A. Menu, J. M. Dutertre, P. A. Moellic, J. B. Rigaud, and J. L. Danger, *Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller*, IEEE International Symposium on Hardware Oriented Security and Trust, HOST, 2019.