

Toward a Low-Cost Methodology for EM Fault Emulation on FPGA

Jia Yun PO, Sami EL AMRAOUI, **Paolo MAISTRI** TIMA Laboratory, Grenoble (FR)

EM Fault Injection

• Electromagnetic Fault Injections (EMFI) exploited more and more

- Great temporal precision
- Good spatial resolution
- Local faults
- Cheaper than laser (LFI)
- Simpler than laser

Exploitable faults ... but WHY?

EM Fault Model

• EM Fault model?

- Timing violations [Dehbaoui, FDTC 2012]
- Set/Reset disruption [Ordas, JCEN 2017]
- Sampling fault [Dumont, TCAD 2021]

• Why?

• Interaction with Power Grid [Dumont, TCAD 2021]

- Results depend on [Ghodrati, DAC 2018]
 - Probe Location
 - Timing
- Specific to EMFI

	EMP	Clock glitch
Туре	Delay & Sample Faults	Delay Faults
Granularity	Local	Global
Requirements	Pulse generator, probes	DCM
Cost	+++	+
Required Know-How		

Is it possible to emulate one with the other?

Objective

EM fault emulation at RTL

- Configurable targets
- Timing controllability
- Full configurability
- Hardware acceleration
- Evaluate the functional effects of EM fault injections on early prototypes
- Evaluate architectural countermeasures

Local Fault Injection

Instrumentation framework

1) Define targets

2) Implement

- Clock Wizard
 - Glitch definition
- Fault Injector
 - Timing control

1) Add & Modify connections

Target Selection

Local Clock Glitching on FPGA

Faulty clock generation using two shifted signals

Faulty clock generation using high frequency signal

Toward a Low-Cost Methodology for EM Fault Emulation on FPGA

Internal Configuration

Automated Parameter Tuning

MMCM Parameters

D : Pre-divider M : Feedback divider O: Output divider

$$F_{VCO} = F_{CLKIN} \times \frac{M}{D}$$
$$F_{OUT} = F_{CLKIN} \times \frac{M}{D \times O}$$

> Phase shift granularity $= 45^{\circ}$ / Output divider

> Freq VCO_max // \longrightarrow Output divider //

Path delay (ns)	Slack (ns)	Phase shift_min (°)	O (712)	Phase Shift stepsize = 45° / O (°)	Accuracy (%)
9,886	0.114	4,104°	10	4,5°	91,2
9,846	0.154	5,544°	8	5,625°	98,56
9,8	0.2	7,2°	12	7,5°	96
9,7	0.3	10,8°	12	11,25°	96

Glitch Strength slider

Table: PS granularity and its accuracy for a 10 ns clock period and Fvco_max =1.2GHz

08/11/2022

Tool

			Inject Glitch!		X
			Choose a Module :	Choose a FlipFlop :	Selected Flip Flops
			Search		
			aes_core {crypto_aes}	Entire Module	aes_core->round->FFD(1,)
Inject Glitch!	-	\Box ×	key_schedule {key_sched_inst} round {round inst}		aes_core->round->FFD_38(1,) aes_core->round->FFD_49(1,)
Input Netlist	C:\Users\samie\Downloads\Glitch\glitchTool5\test.v	Open	reg_en {reg_din} reg_en_parameterized1 {reg_dout} uart_rx_tx {rs232}		aes_core->round->FFD_00(1,) aes_core->round->FFD_71(1,) aes_core->round->FFD_82(1,) aes_core->round->FFD_93(1.)
Input timing report	$\fbox{C:\Users\samie\Downloads\Glitch\glitchTool5\timing_re}}$	Open	clk_wiz_0000 {u0_clk_0000} clk_wiz_0_clk_wiz_0000 {inst}		aes_core->round->FFD_104(1,)
FlipFlops	FFD / FD / FD_1 / FD16CE / FD16RE / FD4CE / FD4RE /	edit List			
Fault Injector Start Signal	synchro oscillo				
Keset Signal	reset_n	1			
VCO_freqMin(MHz)	600				
VCO_freqMax(MHz)	1200				
Input_frequency(MHz)	100			v	
		1		Glitch strength ?	Delete target(s)
	Next		Return	100	Glitch target(s)
				0 100	
				Select glitch moment	Save & Quit
				Select Flip Flop	

08/11/2022

Toward a Low-Cost Methodology for EM Fault Emulation on FPGA

Validation

- 3 AES designs
 - AES-128, AES Parity, AES DDR
- Arty-7 FPGA Board
 - Artix 7-100

Tests

- Different inputs parameters of Fault Injector
 - Phase, Duty Cycle, Frequency
- Different targets (Eg: All bytes / single byte of data registers)
- Different timing (1-10th round of AES)

Faulty CipherText

Inferred Error

Perspectives

- Alternative glitching generation
 - Combined Shifted Clocks vs Combined Frequency
- Emulate other models ("swing", additional cycle, ...)
- Compare to actual EM campaigns
- Fine placement control
 - Isolate targets on FPGA
 - Precision vs Consistency
- Multiple faults (targets/triggers)
 - More than one fault injector (device-limited)
 - Select target from different components
- Advanced triggering conditions
 - E.g., burst/multiple injections
- Polish and Publish

Thank you!