
--

Unveiling the Invisible Threads: Dynamic Infor-
mation Flow Tracking and the Intriguing World of
Fault Injection Attacks
William PENSEC, Vianney LAPÔTRE, Guy GOGNIAT
Lab-STICC, UMR 6285, Université Bretagne Sud, Lorient, France
firstname.lastname@univ-ubs.fr

Information Flow Tracking in a RISC-V processor
Different types of IFT [1, 2]:

• Static or dynamic
• Software, hardware (in-core, off-core [3] (dedi-

cated CPU, co-processor)) or mixed

Three steps
• Tag initialization
• Tag propagation
• Tag verification

Levels of IFT
• Application level
• OS level
• Architectural level

C1

C2

C3

C4

C5
CONTROLLER

IF/ID ID/EX EX/WB

PC T

Tag Check Logic

Instruction Memory

Instruction Cache

Decoder

Exception Controller

Register File T

Tag Update Logic

ALU

CSR

TPR

TCR

MULT DIV FPU

Tag Propagation Logic

LSU

Tag Check Logic

Data Memory T

D-RI5CY
in-core

off-core

off-core

D-RI5CY [4] has been developed by researchers from Columbia University, and University of Turin.

Physical Attacks against DIFT
We consider an attacker able to:

• perform physical attacks to defeat the DIFT mechanism and realize a software attack,
• inject faults in registers associated to the DIFT-related components: set to 0, set to 1 and bit-flips.

Cycle 3430

Decode jalr to shellcode

Register File Tag

ID stage

IF stage

Fetch : 0xc34: addi sp, sp, -128
Decode : 0xc30: jalr zero,ra,0
Execute : 0xc2c: addi sp, sp, 128
WB : 0xc28: lw s0,120(sp)

Cycle 3431

Fetch 1st instruction shellcode

IF stage

Fetch : 0x6fc: addi sp, sp, -16
Decode : 0xc30: jalr zero,x1,0
Execute :
WB : 0xc2c: addi sp, sp, 128

Cycle 3432

Fetch 2nd instruction shellcode
Decode 1st instruction shellcode

Tag Check Register

ID stage

Fetch : 0x700: sw ra,12(sp)
Decode : 0x6fc: addi sp, sp, -16
Execute :
WB :

rf reg[1]

pc if o tag

pc id o tag tcr q[21]

Exception handling

Tag propagation in a buffer overflow attack

T
a
g
P
ro
p
a
g
a
tio

n

Tag Checking

ID Stage

illegal insn dec dift

5

IF Stage

pc id o tag

CSR

0x701 : tcr q[21]

4
rst n

IF Stage

if valid o

IF Stage

pc if o tag

3

rst n

ID Stage

pc set o tag

2 ID Stage

pc mux o

1 Decoder

jump target mux sel o

IF Stage

instr rdata id o[6:0]

IF Stage

if valid o

Controller

jr stall o

Controller

jump done q

Controller

jump in dec i

IF Stage

instr valid id o

IF Stage

if valid o

ID Stage

branch in ex o

Controller

ctrl fsm cs

Reg File Tag

rf reg[1]

Logic description of the exception driving in a buffer overflow attack

Results
We used CABA fault injection simulations to evaluate the sensitivity of DIFT. A total of 4212 simulations have been performed. About 2.21% lead to successful attacks.
55 registers DIFT-related. 13 critical registers highlighted
with injection campaign. About 34.41% are due to set to 0
fault type, 11.83% are due to set to 1 fault type and 53.76%
are due to a bitflip. About 2.59% of the simulated injections
delay the DIFT exception.

Crash NSTR Delay Success Total

Buffer overflow 0 1362 20 22 (1.57%) 1404
Format string 0 1743 77 52 (2.78%) 1872
Compare/Compute 0 905 12 19 (2.03%) 936

Cycle 3428 Cycle 3429 Cycle 3430 Cycle 3431 Cycle 3432

set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip

pc_if_o_tag ✓ ✓

rf_reg[1] ✓ ✓

tcr_q ✓ ✓ ✓ ✓ ✓

tcr_q[21] ✓ ✓ ✓ ✓ ✓

tpr_q ✓ ✓ ✓ ✓

tpr_q[12] ✓ ✓

tpr_q[15] ✓ ✓

Buffer overflow: success per register, fault type and simulation time

Perspectives
• Implement and evaluate countermeasures as simple parity and Ham-

ming code (work in progress) taking into account constraints (perfor-
mance, area, consumption) to protect critical computation related to
DIFT.

• Extend the study to the entire D-RI5CY core and take into account a
more complex threat model (multi-faults models).

• Perform a fault injection campaign targeting a FPGA implementation.

Bibliography
[1] W. Hu et al., “Hardware information flow tracking,” ACM Computing Surveys, 2021. DOI:

10.1145/3447867.
[2] K. Chen et al., “Dynamic information flow tracking: Taxonomy, challenges, and opportuni-

ties,” Micromachines, 2021. DOI: 10.3390/mi12080898.
[3] H. Kannan et al., “Decoupling dynamic information flow tracking with a dedicated copro-

cessor,” in International Conference on Dependable Systems & Networks, IEEE, 2009.
DOI: 10.1109/DSN.2009.5270347.

[4] C. Palmiero et al., “Design and implementation of a dynamic information flow tracking
architecture to secure a RISC-V core for IoT applications,” in High Performance Extreme
Computing, 2018. DOI: 10.1109/HPEC.2018.8547578.

--


