Placement of software countermeasures:
a compositional approach

Etienne Boespflug

September 28, 2023

JAIF 2023

VERIMAG - Université Grenoble Alpes (UGA)

name.lastnameQuniv-grenoble-alpes.fr

Supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) and Arséne (ANR-22-PECY-0004)
and SECUREVAL projects (ANR-22-PECY-0005) |
erimac

Boespflug Placement of software countermeasures September 28, 2023 1/16

Context

Faults injection - Example on verify_pin

PIN verification program from FISSC collection
[Dureuil et al., 2016]

bool compare(uchar* al, uchar* a2, size_t size)
{
bool ret true;
size_t i = 0;
for(; i < size; i++) // Fault
if (a1[i] != a2[il])
ret = false;

if (i !'= size) // Countermeasure
killcard () ;

return ret;

¥

bool verify_pin(uchar* user_pin) {

if (try_counter > 0)
if (compare (user_pin, card_pin, PIN_SIZE)) {
// Authentication
try_counter = 3;
return true;
} else {

try_counter --;
return false;
}

return false;

Placement

software countermeasures September 28, 2023

= Example of software fault model: Test
inversion

— inverse the branch taken during
conditional branching

= Software countermeasures
(program transformations) can be
placed to protect against faults

Context
[e]e] J

Faults injection - Example on verify_pin

PIN verification program from FISSC collection
[Dureuil et al., 2016]

bool compare(uchar* al, uchar* a2, size_t size)
{

bool ret = true;

size_t i = 0;

for(; i < size; i++) // Fault 1

if (a1[i] t= a2[i])
ret = false;
if (i != size) // Fault 2 => countermeasure attack

killcard () ;

return ret;

¥

bool verify_pin(uchar* user_pin) {
if (try_counter > 0)

if (compare (user_pin, card_pin, PIN_SIZE)) {
// Authentication
try_counter = 3;
return true;

} else {
try_counter --;
return false;

}

return false;

Boespflug

software countermeasures

m Example of software fault model: Test
inversion

— inverse the branch taken during
conditional branching

Software countermeasures (program
transformations) can be placed to
protect against faults

Multi-fault:

— countermeasures themselves
can be attacked

— require support for models
combination

%mas

September 28, 2023

Context
@00

Multiple faults

Lazart results on VerifyPIN collection

Lazart [Potet et al., 2014] is an LLVM-level multi-fault robustness
evaluation tool based on Dynamic-Symbolic Execution (KLEE).

Fault models

i
KZKRT m Test/Branch inversion

m Data mutation (1oad) (symbolic)

%mas

Boespflug Placement of software countermeasures September 28, 2023

Context
@00

Multiple faults

Lazart results on VerifyPIN collection

Lazart [Potet et al., 2014] is an LLVM-level multi-fault robustness
evaluation tool based on Dynamic-Symbolic Execution (KLEE).

— Fault models

i
AZA_’RT = Test/Branch inversion

m Data mutation (1oad) (symbolic)

verify_pin version (from FISSC [Dureuil et al., 2016]) | countermeasures O-faults | 1-fault | 2-faults | 3-faults | 4-faults
vp_0 0 0 3 0 0 1
vp_1 HB 0 2 0 0 1
vp_2 HB+FTL 0 2 1 0 il
vp_3 HB+FTL+INL 0 2 1 0 1
vp_4 FTL+INL+DPTC+PTCBK+LC 0 2 0 1 1
vp_5 HB+FTL+DPTC+DC 0 0 4 4 1
vp_6 HB+FTL+INL+DPTC+DT 0 0 3 0 1
vp_7 HB+FTL+INL+DPTC+DT+SC 0 0 2 0 1

= HB: hardened booleans m DC: double call

m FTL: fixed time loops = LC: loop counter

verification

INL: inlined function

Legend: m SC: step counter
m PTC: try counter
decremented first = DT: double test
m PTCBK: try counter m CFI: control flow integrity A V-
backup [Lalande et al., 2014]

Placement of software countermeasures

tember 28, 2023

Context
oeo

Multiple faults

Multiple faults and countermeasures placement

m State of the art attacks combine several faults to achieve their goal
[Kim and Quisquater, 2007], [Natella et al., 2016], [Wookey/SSTIC20, 2020]

m Try-and-error approaches are unsuitable for multi-fault
— countermeasures themselves can be attacked
— testing all countermeasures placements is unrealistic

m Several tools use systematic approach, which could lead to unnecessary
protections [Lalande et al., 2014, de Ferriére, 2019]

How to help to place countermeasures and give guarantees on the protected program
%mas

in multi-fault context ?
Boespflug Placement of software countermeasures September 28, 2023 3/16

Context
ooe

Multiple faults

Placement of software countermeasures

Goal: help to place countermeasures against multi-fault attacks wrt a set of fault
models M

m Target robustness in (at least) N faults
m Using a catalog of countermeasures schemes with Injection Point (IP) granularity

Approach: compositional analysis using:
Isolation analysis of protection schemes

— Notion of adequacy and vulnerability level

Placement algorithms: select the protection to apply to each IP in the program
— Using a representative set of attacks on the program wrt to M

%mas

Boespflug Placement of software countermeasures September 28, 2023 4/16

Analysis in isolation

Analysis in isolation
0e00

Principle of analysis in isolation

Analysis in Isolation ..) . . X
Analysis in isolation: reusable analysis of multi-fault behavior of

protection scheme
Inputs
m Single fault: verify that the protection scheme correctly blocks
successful attacks for the fault model m € M (adequacy), with m the
fault model of the unprotected IP

’ Protection

. scheme |
T Fault models
Faulted executions Attack
exploration objective

£

%mas

Boespflug Placement of software countermeasures September 28, 2023

Analysis in isolation
0e00

Principle of analysis in isolation

Analysis in Isolation ..) . . X
Analysis in isolation: reusable analysis of multi-fault behavior of

protection scheme
Inputs
m Single fault: verify that the protection scheme correctly blocks
successful attacks for the fault model m € M (adequacy), with m the
fault model of the unprotected IP

’ Protection

scheme
I — m Multi fault: research of the vulnerability level (v/) of the protection
T Fault models scheme:
- d' 7 o | A — e.g. How many faults are required to induce an abnormal
a”e‘;plif:tf;n"’"f | objective | behavior (not detected) for the protected IP ?
S — Unprotected IP has v/ = 1
I — Can be computed with Lazart

vi

%mas

Boespflug Placement of software countermeasures September 28, 2023

Analysis in isolation
[e]e] le)

Analysis in isolation of Load Duplication scheme

Unprotected IP

bb_target:

AT stmti

(P 1 p» %target = load %var
~ simt2

Load duplication (LM)

bb_target:
AT stmti
(IP1 > siarget = load %var
~ 9%clone = load %var <{IP1B
— 9%C = icmp ne %target %clone N
/IP\ %Dbr %c bb_LM_cm bb_LM_tail

L e e R

bb_LM_tail:
simi2

call detect()

Boespflug

Load Duplication: duplication of a 1oad instruction
Isolation analysis with Test Inversion and Data Load fault models

m Explore all faulted paths inside the Protection Scheme,
using symbolic entries (%var), M = {T/,DL} and ¢ =
%target stores v # %var:

Ts(P, M): successful undetected attacks

Tc(P, M): detected attacks

Tn(P, M): nominal case

error cases are in Tg or T¢ depending on the user

m Vulnerability Level: Search of the minimal number of
faults required to invalidate the nominal behavior

— vl = minimum number of faults in Ts(P, M)

%mas

software countermeasures September 28, 2023

Analysis in isolation
[e]e]e)

Vulnerability Level (v/) for Load Multiplication

Unprotected IP
[bb_target:

o | smtt
(1p1 %target = load %var
| stme2

Countermeasure | 0-faults 1-fault 2-faults 3-faults v/
Load duplication (LM5)

[0 T 0 [
bb_target: LMy 0 0 1 0 2

A LM 0 0 0 103

(IP1 > load %var —~

~ load %var <—IP1§

— %c = icmp ne %target %clone
(T8 | orskc bb_LM_cm bb_LM_tail

Table: Vulnerability Level of LMy,
L S R

bb_LM_tail:
stmt2.

call detect():

Load tripling (LM;)

bb_target:

N smtt

(1P 1)} ostarget = load %var .
7| %clone = load %v: «{p1B)

_ e amp e Starget ocone. |)
(TP | %br %c bb_LM_cm bb_LM_tail

bb_LM_cm:
call detect(), load %var A
5\ | %c2 = icmp ne %target %clone2 |«{IP 1)
(no-return) G::w %br %c2 bb_LM_cm2 bb_LM_tail
g T | F

bb_LM_cmz2:
call detect()

(no-return)

Boespflu

bb_LM_tail:
stmt2.

f software countermeasures

ptember 28, 2023

Analysis in isolation
[e]e]e)

Vulnerability Level (v/) for Load Multiplication

Unprotected IP

(1p1

Load duplication (LM5)

bb_target:
-
(IP1 > %target = load %var o
~ =load %var 1P 1B)
— %¢ = icmp ne %arget %clone N\
/IP\ %br %c bb_LM_cm bb_LM_tail
L S N RN S
)_ LM ¢ bb_LM_tail:
call detect(), stmt2
Load tripling (LMj)
nn ':Argel
(P11 > marget load %var o~
~ %clone = load % <P 1B/

%c = icmp ne "mtarget 9clone N
9%br %c bb_LM_cm bb_LM_tail

Countermeasure | 0-faults 1-fault 2-faults 3-faults

I,
LMy
LM,

Counlermeasure\o-faulls 1-fault 2-faults 3-faults

0 1 0
0 0 1
0 0 0

Table: Vulnerability Level of LMy,

B,
BM;
BM;

bb_LM_cm:
call detect()

(no-return)

bb_LM_cmz2:
call detect()

(no-return)

bb_LM_d1
S4clone2 = load %var
S\ | %c2 = icmp ne Setarget %clone2
(P | Gbrucs bb_LM_cm2 bb_LM_tail

«fP1c)

w2/ T | F

bb_LM_tail:
stmt2.

0 1 0
0 0 1
0 0 0

Table: Vulnerability Level of BM,

software countermeasures

vl
0 1
0 2
1 3

4
0 1
0 2
1 3

wmas

eptember 28, 2023

Analysis in isolation
[e]e]e)

Vulnerability Level (v/) for Load Multiplication

Unprotected IP

\/II;1\
o - Countermeasure | 0-faults 1-fault 2-faults 3-faults v/
Load duplication (LM;) M, 0 T 0 0 1
bb_target: LM1 0 0 1 0 2
| st LM, 0 0 0 1 3
(IP1 > starget = load %var o
~ %Cclone = load %var <P 1B|
— %C = icmp ne %target %clone ~ . il
(B oooroie o M crmob i s Table: Vulnerability Level of LMp
D s s —
call detect(): nz;?’:g,mn: Countermeasure \ O-faults 1-fault 2-faults 3-faults v/
Load tripling (LMj) BMO 0 1 0 0 1
BM; 0 0 1 0o 2
bb_target: BM; 0 0 0 1 3
N | st
(P1 > "s/ﬂgrget:\uad Y%var P .
"= sicione = oaa evar (P18 Table: Vulnerability Level of BMp
_ %e = icmp ne %target %clone N
(TP | 9%br %c bb_LM_cm bb_LM_tail
D e ——
bb_LM_cm: bb_LM_d1
“’“"e‘e’:& - i | oo e staget sckoned -2 19) The countermeasures BM, and TM, have v =1 4+ n
: R i T (verified for n < 4 with Lazart)

bb_LM_tail: V
simiz ‘erimac

tember 28, 2023

call detect():

(no-return)

oftware countermeasures

Placement algorithms

Placement algorithms
[e] lele)

tematic placement algorithms

Table: Principle of each placement algorithms

Approach | Algorithm | Description
y i naive All'IPs in P are protected with v/ > N
atk All'IPs in attacks are protected with vi > N
y min All'lIPs in minimal attacks are protected with vi > N
Block block At least one IP per minimal attacks is protected with vi > N
Distributed opt Protection is diglributed belvyeen the IPs in minimal
attacks, to get rid of attacks in less than N + 1 faults.

Naive placement algorithm (naive): protect all IPs in the program with v/ > N:

Compute required vulnerability levels (v/;,) for each IP (initialized to 1)

Generate P’ with protection scheme matching the required vulnerability levels

= Using a catalog C of countermeasures (with computed vij,)

— corresponds to standard systematic protection tools

— does not require attacks paths

Boespflug

%mas

Placement of software countermeasures September 28, 2023

Placement algorithms
[e] lele)

Systematic placement algorithms

Table: Principle of each placement algorithms

Approach | Algorithm | Description
y i naive All'IPs in P are protected with v/ > N
atk All'IPs in attacks are protected with vi > N
y min All'lIPs in minimal attacks are protected with vi > N
Block block At least one IP per minimal attacks is protected with vi > N
Distributed opt Protection is diglributed belvyeen the IPs in minimal
attacks, to get rid of attacks in less than N + 1 faults.

Naive placement algorithm (naive): protect all IPs in the program with v/ > N:

Compute required vulnerability levels (v/;,) for each IP (initialized to 1)

Generate P’ with protection scheme matching the required vulnerability levels

= Using a catalog C of countermeasures (with computed vij,)

— corresponds to standard systematic protection tools

— does not require attacks paths

= Use exploration of attack (7s(P, M)) on P, with user-defined ¢ \/
erimac

Boespflug

Placement of software countermeasures September 28, 2023

Placement algorithms
[e]

(e]e]

Compositional analysis placement

Isolation analysis

unprotected IP (K = 1) protected IP (K = 2)

= |solation analysis for each considered
protection scheme with all studied fault models

]

Faulted executions exploration _)
= Attacks path exploration on P gives guarantees
on which IP violation can lead to an attack

— Here, IPA can be left unprotected if IPB is
protected

wmas

Placement of software countermeasures eptember 28, 2023

Placement algorithms
[e]

(e]e]

Compositional analysis placement

Isolation analysis

unprotected IP (K = 1) protected IP (K = 2)

= |solation analysis for each considered
protection scheme with all studied fault models

]

Faulted executions exploration _)
= Attacks path exploration on P gives guarantees

on which IP violation can lead to an attack
— Here, IPA can be left unprotected if IPB is
protected

> => Protection can be distributed between the IPs

$?

" V.
erimac

Placement of software countermeasures eptember 28, 2023

Placement algorithms
[e]e]e]

Optimal distributed placement

Distribute protections of IPs inside (minimal) attacks traces to ensure at least N + 1 faults are required to obtain attacks

— usable if the catalog C does not contains CM for v/ > N

An Integer Linear Programming (ILP) optimization problem
— attacks gives constraints on the protection to apply

Trace i > faultA > faultB > faultA > Ci=2xa+xp>N

Trace > faultB > faultB > faultC > Cj=2xp+xc>N

Trace k > fautA > faultC > faultE > faultB > Ck=Xat+Xp+Xc+Xe>N
Trace m »: fault D > faultE »‘: fault D ‘-{ fault D ‘> Cm=3xd+Xe>N

Research of the optimal placement
= minimize the protection weight Z = xg + xp + ... + Xp

= require to ensure that all states produced by the protected IPs are studied in trace exploration fault models

— guarantees on partially protected IPs

software countermeasures September 28, 2023

Experimentation

Experimentation
[e] le]e]

Experimentation - verify_pin

verify_pin [Dureuil et al., 2016] (VP): smart-card PIN verification process
m fault model: Test Inversion (TI)

Exp. Algo. > of protections Robust
Program Fault Model IPs | [1-fault 2-faults 3-faults 4-faults |
VP TI 8 naive 8 16 24 32 v
atk 3 8 12 16 v
min 3 8 12 16 v
block 3 6 9 12 v
opt 3 6 9 12 v

software countermeasures September 28, 2023

Experimentation
[e]e] o]

Experimentations - memcmps3

memcmps v3 (MCMPS): secure version of memcmp.
m fault models: Test Inversion (TI) + Data Load (DL)

Exp. Algo. > of protections Robust
Program Fault Model IPs | [1-fault 2-faults 3-faults 4-faults |
MCMPS TI 12 naive 12 24 36 48 v
atk 0 0 0 16 v
min 0 0 0 16 v
block 0 0 0 4 v
opt 0 0 0 1 v
MCMPS DL 15 naive 15 30 45 60 v
atk 1 6 15 32 v
min 1 6 15 32 v
block 1 4 6 8 's
opt. 1 3 5 7 v
MCMPS Tl+DL 27 naive 27 54 81 108 v
atk 1 8 24 56 v
min 1 8 24 56 v
block 1 6 9 12 v
opt 1 3 5 8 v
Placement of software countermeasures September 28, 2023

Experimentation
[e]ele]]

Experimentations - FU1

firmware_updater v1 (FU): updates a firmware from remote source
m fault models: Test Inversion (TI) + Data Load (DL)

Exp. Algo. > of protections Robust
Program Fault Model IPs | [1-fault 2-faults 3-faults 4-faults |
ful Tl 42 naive 42 84 126 168 v
atk 0 28 42 88 's
min 0 28 42 72 v
block 0 14 21 28 v
opt 0 7 14 21 v
DL 2 naive 2 4 6 8 v
atk 1 4 6 8 v
min 1 2 3 4 's
block 1 2 3 4 's
opt. 1 2 3 4 v
TI+DL 44 naive 44 88 132 176 v
atk 1 32 60 96 v
min 1 32 60 80 v
block 1 16 24 32 v
opt 1 9 17 25 v
Placement of software countermeasures September 28, 2023

Conclusion and future work

Conclusion and future work

Summary

Conclusion and Future Work

Conclusion:

= Isolation analysis allows to reason about unprotected and protected IP out of the context of a
particular program

— vulnerability level quantifies guarantees of the CM wrt a set of fault models

%mas

Boespflug Placement of software countermeasures September 28, 2023 14/16

Conclusion and future work

Summary

Conclusion and Future Work

Conclusion:

= Isolation analysis allows to reason about unprotected and protected IP out of the context of a
particular program

— vulnerability level quantifies guarantees of the CM wrt a set of fault models
= Placement algorithms gives strong guarantees, even if the trace set is incomplete
— optimality of the placement guaranteed by ILP

%mas

Boespflug Placement of software countermeasures September 28, 2023 14/16

Conclusion and future work

Summary

Conclusion and Future Work

Conclusion:

= Isolation analysis allows to reason about unprotected and protected IP out of the context of a
particular program

— vulnerability level quantifies guarantees of the CM wrt a set of fault models
= Placement algorithms gives strong guarantees, even if the trace set is incomplete
— optimality of the placement guaranteed by ILP

Future Work:
= Study of countermeasures propagating states (SSCF, Swift...)

— may require to consider two isolation analysis cases: sane CM’s inputs and corrupted CM’s
inputs

m Study of more complex CFG fault models
— requires to take into account the several entry and output points of the protection scheme
= Implementation of the approach on binary level

Lazart is planned to be released open-source (Nov 2023)

%mas

Boespflug Placement of software countermeasures September 28, 2023 14/16

Conclusion and future work

Summary

Future Work - Model protectability

.
i K Fault models
P : Protectable
- L Locally Protectable
- g: Globaly Protectable
r D N Unprotectable
| § s - D : Diluable
-8 Strictly unprotectable
6 J L J
Rl T
P N (-7)

m L: it exists an IP granularity countermeasures with v/ > N for all N > 1 (Test Inversion, Data
Load mutation)

G: dem such as cm(P) is robust in N faults

m D: Fem such as cm(P) is robust in N faults, but the attacks can be made more difficult

= S: even making the attack more difficult is not possible [Given-Wilson and Legay, 2020] \/
erimac

Boespflug Placement of software countermeasures September 28, 2023

Conclusion and future work
ooce

Summary

The End

Thanks for watching

%mas

Boespflug Placement of software countermeasures September 28, 2023

Lazart architecture

Attack model b
{ Legend:
instrumented Attack . i
program objectives T E
: Inputs
‘ Frant £na E Files Outputs (Resuts)
l ! Intermédiate Files
Preprocessing and b
Compilation ¥
| J Lazart core (python)
: Process | I Wolverine (LLVIM/G++)
Regundancy Countermeasurs) = .
Attack results) — - F: —
T ¥ T E DSE (Kiee third party)
l J E
Mutated LLVM ™

tecode

Dynamic Symbolic
Execution

erimac

Boespflu Placement of software countermeasures September 28, 2023

Summary

= Robustness of placement depends on the property of the catalog C

m P’is guaranteed to be robust for N faults if the required protection coefficients (K) are available

— if not, attack traces on P’ are known

— more robust than P even if trace set is incomplete

= Protection weight: distributed < block < min < atk < naive

— Optimal placement is guaranteed with ILP

Algorithm Type Guarantees P’ Complexity Required analysis
Robust Optimal AA Red HS

naive syst. v - o(t) v - -

atk syst. v - o(t) v -

min syst. v - o(t) v v -

block block v - o(t) 's v v

opt distributed v v NP-Complete v v -

= Placement algorithm is fast compared to trace generation (DSE)

— even with optimal algorithm and ILP (1-fault attacks)

Boespflug Placement of software countermeasures

%mas

September 28, 2023 16/16

memcmps3 program

20
21

22
23

24

Listing: Analysis’s main

// main.c
#include "lazart.h"
#include "memcmps.h"

#define SIZE 4
int main()

// Inputs

uint8_t al[SIZE];

LZ__SYM(al, SIZE); // Symbolic array
uint8_t a2[SIZE];

_LZ__SYM(a2, SIZE); // Symbolic array

bool equals = true;

for(size_t i = 0; i < SIZE; ++i)
if (a1[i] != a2[il)
equals = false;

_LZ__ORACLE (!equal); // Consider only
different inputs

BOOL res = memcmps(al, a2, SIZE); // Call
studied function

_LZ__ORACLE(res == TRUE); // Attack
objective

Boespflu

16
17

18
19
20
21
22
23
24
256

Placement of software countermeasures

Listing: memcmps3 program

// mememps . h
typedef BOOL uintl6_t;

#define TRUE 0x1234u
#define FALSE 0x5678u
#define MASK 0xABCDu

// memcmps.c
#include "memcmps.h"

BOOL memcmps (uint8_t* a, uint8_t* b, size_t len)
{
BOOL result = FALSE;

if (tmemcmp(a, b, len)) {

result ~= MASK; // result = FALSE
" MASK
if (tmemcmp(a, b, len)) {
result ~= FALSE -~ TRUE; // result = MASK -~
TRUE
if (!memcmp(a, b, len)) {
result ~= MASK; // result = TRUE
¥
¥
}
return result;
} -
erimac
September 28, 2023 16/16

References |

@ de Ferriere, F. (2019).
A compiler approach to cyber-security.
2019 European LLVM developers’ meeting.

@ Dureuil, L., Petiot, G., Potet, M., Le, T., Crohen, A., and de Choudens, P. (2016).

FISSC: A Fault Injection and Simulation Secure Collection.
In Computer Safety, Reliability, and Security - 35th International Conference, SAFECOMP 2016, Trondheim,

Norway, September 21-23, 2016, Proceedings, pages 3—11.
@ Given-Wilson, T. and Legay, A. (2020).

Formalising fault injection and countermeasures.

In Proceedings of the 15th International Conference on Availability, Reliability and Security, pages 1-11.
@ Kim, C. H. and Quisquater, J.-J. (2007).

Fault attacks for crt based rsa: New attacks, new results, and new countermeasures.

In IFIP International Workshop on Information Security Theory and Practices, pages 215-228. Springer.
@ Lalande, J., Heydemann, K., and Berthomé, P. (2014).

Software countermeasures for control flow integrity of smart card C codes.
In Pr. of the 19th European Symposium on Research in Computer Security, ESORICS 2014, pages 200—218.\/

erimac

Boespflug Placement of software countermeasures September 28, 2023 16

References Il

[

B

Natella, R., Cotroneo, D., and Madeira, H. S. (2016).

Assessing Dependability with Software Fault Injection: A Survey.
ACM Computing Surveys, 48(3):1-55.

Potet, M.-L., Mounier, L., Puys, M., and Dureuil, L. (2014).

Lazart: A symbolic approach for evaluation the robustness of secured codes against control flow injections.
In 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation, pages

213-222. |IEEE.
Wookey/SSTIC20 (2020).

Inter-cesti: Methodological and technical feedbacks on hardware devices evaluations.

https://wuw.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_
technical_feedbacks/SSTIC2020-Article-inter- cesti_methodological_and_technical_feedbacks_
on_hardware_devices_evaluations-benadjila.pdf

%mas

Boespflug Placement of software countermeasures September 28, 2023 16/16

https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf
https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf
https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf

