
Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Placement of software countermeasures:
a compositional approach

Etienne Boespflug

September 28, 2023

JAIF 2023

VERIMAG - Université Grenoble Alpes (UGA)
name.lastname@univ-grenoble-alpes.fr

Supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) and Arsène (ANR-22-PECY-0004)
and SECUREVAL projects (ANR-22-PECY-0005)

Boespflug Placement of software countermeasures September 28, 2023 1 / 16



Outline

1 Context

2 Analysis in isolation

3 Placement algorithms

4 Experimentation

5 Conclusion and future work



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Faults injection - Example on verify_pin

PIN verification program from FISSC collection
[Dureuil et al., 2016]

1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++) // Fault
6 if(a1[i] != a2[i])
7 ret = false;
8
9 if(i != size) // Countermeasure
10 killcard ();
11
12 return ret;
13 }
14
15 bool verify_pin(uchar* user_pin) {
16 if(try_counter > 0)
17 if(compare(user_pin , card_pin , PIN_SIZE)) {
18 // Authentication
19 try_counter = 3;
20 return true;
21 } else {
22 try_counter --;
23 return false;
24 }
25 return false;
26 }

Example of software fault model: Test
inversion

→ inverse the branch taken during
conditional branching

Software countermeasures
(program transformations) can be
placed to protect against faults

Boespflug Placement of software countermeasures September 28, 2023 1 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Faults injection - Example on verify_pin

PIN verification program from FISSC collection
[Dureuil et al., 2016]

1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++) // Fault 1
6 if(a1[i] != a2[i])
7 ret = false;
8
9 if(i != size) // Fault 2 => countermeasure attack
10 killcard ();
11
12 return ret;
13 }
14
15 bool verify_pin(uchar* user_pin) {
16 if(try_counter > 0)
17 if(compare(user_pin , card_pin , PIN_SIZE)) {
18 // Authentication
19 try_counter = 3;
20 return true;
21 } else {
22 try_counter --;
23 return false;
24 }
25 return false;
26 }

Example of software fault model: Test
inversion

→ inverse the branch taken during
conditional branching

Software countermeasures (program
transformations) can be placed to
protect against faults

Multi-fault:

→ countermeasures themselves
can be attacked

→ require support for models
combination

Boespflug Placement of software countermeasures September 28, 2023 1 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Multiple faults

Lazart results on VerifyPIN collection

Lazart [Potet et al., 2014] is an LLVM-level multi-fault robustness
evaluation tool based on Dynamic-Symbolic Execution (KLEE).

Fault models

Test/Branch inversion

Data mutation (load) (symbolic)

verify_pin version (from FISSC [Dureuil et al., 2016]) countermeasures 0-faults 1-fault 2-faults 3-faults 4-faults
vp_0 ∅ 0 3 0 0 1
vp_1 HB 0 2 0 0 1
vp_2 HB+FTL 0 2 1 0 1
vp_3 HB+FTL+INL 0 2 1 0 1
vp_4 FTL+INL+DPTC+PTCBK+LC 0 2 0 1 1
vp_5 HB+FTL+DPTC+DC 0 0 4 4 1
vp_6 HB+FTL+INL+DPTC+DT 0 0 3 0 1
vp_7 HB+FTL+INL+DPTC+DT+SC 0 0 2 0 1

Legend:

HB: hardened booleans

FTL: fixed time loops

INL: inlined function

PTC: try counter
decremented first

PTCBK: try counter
backup

DC: double call

LC: loop counter
verification

SC: step counter

DT: double test

CFI: control flow integrity
[Lalande et al., 2014]

Boespflug Placement of software countermeasures September 28, 2023 2 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Multiple faults

Lazart results on VerifyPIN collection

Lazart [Potet et al., 2014] is an LLVM-level multi-fault robustness
evaluation tool based on Dynamic-Symbolic Execution (KLEE).

Fault models

Test/Branch inversion

Data mutation (load) (symbolic)

verify_pin version (from FISSC [Dureuil et al., 2016]) countermeasures 0-faults 1-fault 2-faults 3-faults 4-faults
vp_0 ∅ 0 3 0 0 1
vp_1 HB 0 2 0 0 1
vp_2 HB+FTL 0 2 1 0 1
vp_3 HB+FTL+INL 0 2 1 0 1
vp_4 FTL+INL+DPTC+PTCBK+LC 0 2 0 1 1
vp_5 HB+FTL+DPTC+DC 0 0 4 4 1
vp_6 HB+FTL+INL+DPTC+DT 0 0 3 0 1
vp_7 HB+FTL+INL+DPTC+DT+SC 0 0 2 0 1

Legend:

HB: hardened booleans

FTL: fixed time loops

INL: inlined function

PTC: try counter
decremented first

PTCBK: try counter
backup

DC: double call

LC: loop counter
verification

SC: step counter

DT: double test

CFI: control flow integrity
[Lalande et al., 2014]

Boespflug Placement of software countermeasures September 28, 2023 2 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Multiple faults

Multiple faults and countermeasures placement

State of the art attacks combine several faults to achieve their goal
[Kim and Quisquater, 2007], [Natella et al., 2016], [Wookey/SSTIC20, 2020]

Try-and-error approaches are unsuitable for multi-fault

→ countermeasures themselves can be attacked

→ testing all countermeasures placements is unrealistic

Several tools use systematic approach, which could lead to unnecessary
protections [Lalande et al., 2014, de Ferrière, 2019]

Probl.
How to help to place countermeasures and give guarantees on the protected program
in multi-fault context ?

Boespflug Placement of software countermeasures September 28, 2023 3 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Multiple faults

Placement of software countermeasures

Goal: help to place countermeasures against multi-fault attacks wrt a set of fault
models M

Target robustness in (at least) N faults

Using a catalog of countermeasures schemes with Injection Point (IP) granularity

Approach: compositional analysis using:

1 Isolation analysis of protection schemes

→ Notion of adequacy and vulnerability level

2 Placement algorithms: select the protection to apply to each IP in the program

→ Using a representative set of attacks on the program wrt to M

Boespflug Placement of software countermeasures September 28, 2023 4 / 16



Outline

1 Context

2 Analysis in isolation

3 Placement algorithms

4 Experimentation

5 Conclusion and future work



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Principle of analysis in isolation

Analysis in isolation: reusable analysis of multi-fault behavior of
protection scheme

Single fault: verify that the protection scheme correctly blocks
successful attacks for the fault model m ∈ M (adequacy), with m the
fault model of the unprotected IP

Multi fault: research of the vulnerability level (vl) of the protection
scheme:

→ e.g. How many faults are required to induce an abnormal
behavior (not detected) for the protected IP ?

→ Unprotected IP has vl = 1

→ Can be computed with Lazart

Boespflug Placement of software countermeasures September 28, 2023 5 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Principle of analysis in isolation

Analysis in isolation: reusable analysis of multi-fault behavior of
protection scheme

Single fault: verify that the protection scheme correctly blocks
successful attacks for the fault model m ∈ M (adequacy), with m the
fault model of the unprotected IP

Multi fault: research of the vulnerability level (vl) of the protection
scheme:

→ e.g. How many faults are required to induce an abnormal
behavior (not detected) for the protected IP ?

→ Unprotected IP has vl = 1

→ Can be computed with Lazart

Boespflug Placement of software countermeasures September 28, 2023 5 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Analysis in isolation of Load Duplication scheme

Load Duplication: duplication of a load instruction

Isolation analysis with Test Inversion and Data Load fault models

Explore all faulted paths inside the Protection Scheme,
using symbolic entries (%var), M = {TI, DL} and ϕ =
%target stores v ̸= %var:

Ts (P, M): successful undetected attacks
Tc (P, M): detected attacks
Tn(P, M): nominal case
error cases are in Ts or Tc depending on the user

Vulnerability Level: Search of the minimal number of
faults required to invalidate the nominal behavior

→ vl = minimum number of faults in Ts(P, M)

Boespflug Placement of software countermeasures September 28, 2023 6 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Vulnerability Level (vl) for Load Multiplication

Countermeasure 0-faults 1-fault 2-faults 3-faults vl
LM0 0 1 0 0 1
LM1 0 0 1 0 2
LM2 0 0 0 1 3

Table: Vulnerability Level of LMn

Countermeasure 0-faults 1-fault 2-faults 3-faults vl
BM0 0 1 0 0 1
BM1 0 0 1 0 2
BM2 0 0 0 1 3

Table: Vulnerability Level of BMn

The countermeasures BMn and TMn have vl = 1 + n
(verified for n ≤ 4 with Lazart)

Boespflug Placement of software countermeasures September 28, 2023 7 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Vulnerability Level (vl) for Load Multiplication

Countermeasure 0-faults 1-fault 2-faults 3-faults vl
LM0 0 1 0 0 1
LM1 0 0 1 0 2
LM2 0 0 0 1 3

Table: Vulnerability Level of LMn

Countermeasure 0-faults 1-fault 2-faults 3-faults vl
BM0 0 1 0 0 1
BM1 0 0 1 0 2
BM2 0 0 0 1 3

Table: Vulnerability Level of BMn

The countermeasures BMn and TMn have vl = 1 + n
(verified for n ≤ 4 with Lazart)

Boespflug Placement of software countermeasures September 28, 2023 7 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Vulnerability Level (vl) for Load Multiplication

Countermeasure 0-faults 1-fault 2-faults 3-faults vl
LM0 0 1 0 0 1
LM1 0 0 1 0 2
LM2 0 0 0 1 3

Table: Vulnerability Level of LMn

Countermeasure 0-faults 1-fault 2-faults 3-faults vl
BM0 0 1 0 0 1
BM1 0 0 1 0 2
BM2 0 0 0 1 3

Table: Vulnerability Level of BMn

The countermeasures BMn and TMn have vl = 1 + n
(verified for n ≤ 4 with Lazart)

Boespflug Placement of software countermeasures September 28, 2023 7 / 16



Outline

1 Context

2 Analysis in isolation

3 Placement algorithms

4 Experimentation

5 Conclusion and future work



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Systematic placement algorithms

Table: Principle of each placement algorithms

Approach Algorithm Description

Systematic naive All IPs in P are protected with vl > N
Systematic atk All IPs in attacks are protected with vl > N
Systematic min All IPs in minimal attacks are protected with vl > N
Block block At least one IP per minimal attacks is protected with vl > N

Distributed opt
Protection is distributed between the IPs in minimal
attacks, to get rid of attacks in less than N + 1 faults.

Naive placement algorithm (naive): protect all IPs in the program with vl > N:

1 Compute required vulnerability levels (vlip) for each IP (initialized to 1)

2 Generate P′ with protection scheme matching the required vulnerability levels

⇒ Using a catalog C of countermeasures (with computed vlip)

→ corresponds to standard systematic protection tools

→ does not require attacks paths

⇒ Use exploration of attack (Ts(P, M)) on P, with user-defined ϕ

Boespflug Placement of software countermeasures September 28, 2023 8 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Systematic placement algorithms

Table: Principle of each placement algorithms

Approach Algorithm Description

Systematic naive All IPs in P are protected with vl > N
Systematic atk All IPs in attacks are protected with vl > N
Systematic min All IPs in minimal attacks are protected with vl > N
Block block At least one IP per minimal attacks is protected with vl > N

Distributed opt
Protection is distributed between the IPs in minimal
attacks, to get rid of attacks in less than N + 1 faults.

Naive placement algorithm (naive): protect all IPs in the program with vl > N:

1 Compute required vulnerability levels (vlip) for each IP (initialized to 1)

2 Generate P′ with protection scheme matching the required vulnerability levels

⇒ Using a catalog C of countermeasures (with computed vlip)

→ corresponds to standard systematic protection tools

→ does not require attacks paths

⇒ Use exploration of attack (Ts(P, M)) on P, with user-defined ϕ

Boespflug Placement of software countermeasures September 28, 2023 8 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Compositional analysis placement

Isolation analysis for each considered
protection scheme with all studied fault models

Attacks path exploration on P gives guarantees
on which IP violation can lead to an attack

→ Here, IPA can be left unprotected if IPB is
protected

⇒ Protection can be distributed between the IPs

Boespflug Placement of software countermeasures September 28, 2023 9 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Compositional analysis placement

Isolation analysis for each considered
protection scheme with all studied fault models

Attacks path exploration on P gives guarantees
on which IP violation can lead to an attack

→ Here, IPA can be left unprotected if IPB is
protected

⇒ Protection can be distributed between the IPs

Boespflug Placement of software countermeasures September 28, 2023 9 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Optimal distributed placement

Distribute protections of IPs inside (minimal) attacks traces to ensure at least N + 1 faults are required to obtain attacks

→ usable if the catalog C does not contains CM for vl > N

An Integer Linear Programming (ILP) optimization problem

→ attacks gives constraints on the protection to apply

Research of the optimal placement

⇒ minimize the protection weight Z = xa + xb + ... + xp

require to ensure that all states produced by the protected IPs are studied in trace exploration fault models

→ guarantees on partially protected IPs

Boespflug Placement of software countermeasures September 28, 2023 10 / 16



Outline

1 Context

2 Analysis in isolation

3 Placement algorithms

4 Experimentation

5 Conclusion and future work



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Experimentation - verify_pin

verify_pin [Dureuil et al., 2016] (VP): smart-card PIN verification process

fault model: Test Inversion (TI)

Exp. Algo.
∑

of protections Robust
Program Fault Model IPs 1-fault 2-faults 3-faults 4-faults

VP TI 8 naive 8 16 24 32 ✓
atk 3 8 12 16 ✓
min 3 8 12 16 ✓
block 3 6 9 12 ✓
opt 3 6 9 12 ✓

Boespflug Placement of software countermeasures September 28, 2023 11 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Experimentations - memcmps3

memcmps v3 (MCMPS): secure version of memcmp.

fault models: Test Inversion (TI) + Data Load (DL)

Exp. Algo.
∑

of protections Robust
Program Fault Model IPs 1-fault 2-faults 3-faults 4-faults

MCMPS TI 12 naive 12 24 36 48 ✓
atk 0 0 0 16 ✓
min 0 0 0 16 ✓
block 0 0 0 4 ✓
opt 0 0 0 1 ✓

MCMPS DL 15 naive 15 30 45 60 ✓
atk 1 6 15 32 ✓
min 1 6 15 32 ✓
block 1 4 6 8 ✓
opt 1 3 5 7 ✓

MCMPS TI + DL 27 naive 27 54 81 108 ✓
atk 1 8 24 56 ✓
min 1 8 24 56 ✓
block 1 6 9 12 ✓
opt 1 3 5 8 ✓

Boespflug Placement of software countermeasures September 28, 2023 12 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Experimentations - FU1

firmware_updater v1 (FU): updates a firmware from remote source

fault models: Test Inversion (TI) + Data Load (DL)

Exp. Algo.
∑

of protections Robust
Program Fault Model IPs 1-fault 2-faults 3-faults 4-faults

fu1 TI 42 naive 42 84 126 168 ✓
atk 0 28 42 88 ✓
min 0 28 42 72 ✓
block 0 14 21 28 ✓
opt 0 7 14 21 ✓

DL 2 naive 2 4 6 8 ✓
atk 1 4 6 8 ✓
min 1 2 3 4 ✓
block 1 2 3 4 ✓
opt 1 2 3 4 ✓

TI+DL 44 naive 44 88 132 176 ✓
atk 1 32 60 96 ✓
min 1 32 60 80 ✓
block 1 16 24 32 ✓
opt 1 9 17 25 ✓

Boespflug Placement of software countermeasures September 28, 2023 13 / 16



Outline

1 Context

2 Analysis in isolation

3 Placement algorithms

4 Experimentation

5 Conclusion and future work



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Summary

Conclusion and Future Work

Conclusion:

Isolation analysis allows to reason about unprotected and protected IP out of the context of a
particular program

→ vulnerability level quantifies guarantees of the CM wrt a set of fault models

Placement algorithms gives strong guarantees, even if the trace set is incomplete

→ optimality of the placement guaranteed by ILP

Future Work:

Study of countermeasures propagating states (SSCF, Swift...)

→ may require to consider two isolation analysis cases: sane CM’s inputs and corrupted CM’s
inputs

Study of more complex CFG fault models

→ requires to take into account the several entry and output points of the protection scheme

Implementation of the approach on binary level

Lazart is planned to be released open-source (Nov 2023)

Boespflug Placement of software countermeasures September 28, 2023 14 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Summary

Conclusion and Future Work

Conclusion:

Isolation analysis allows to reason about unprotected and protected IP out of the context of a
particular program

→ vulnerability level quantifies guarantees of the CM wrt a set of fault models

Placement algorithms gives strong guarantees, even if the trace set is incomplete

→ optimality of the placement guaranteed by ILP

Future Work:

Study of countermeasures propagating states (SSCF, Swift...)

→ may require to consider two isolation analysis cases: sane CM’s inputs and corrupted CM’s
inputs

Study of more complex CFG fault models

→ requires to take into account the several entry and output points of the protection scheme

Implementation of the approach on binary level

Lazart is planned to be released open-source (Nov 2023)

Boespflug Placement of software countermeasures September 28, 2023 14 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Summary

Conclusion and Future Work

Conclusion:

Isolation analysis allows to reason about unprotected and protected IP out of the context of a
particular program

→ vulnerability level quantifies guarantees of the CM wrt a set of fault models

Placement algorithms gives strong guarantees, even if the trace set is incomplete

→ optimality of the placement guaranteed by ILP

Future Work:

Study of countermeasures propagating states (SSCF, Swift...)

→ may require to consider two isolation analysis cases: sane CM’s inputs and corrupted CM’s
inputs

Study of more complex CFG fault models

→ requires to take into account the several entry and output points of the protection scheme

Implementation of the approach on binary level

Lazart is planned to be released open-source (Nov 2023)

Boespflug Placement of software countermeasures September 28, 2023 14 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Summary

Future Work - Model protectability

L: it exists an IP granularity countermeasures with vl > N for all N > 1 (Test Inversion, Data
Load mutation)

G: ∃cm such as cm(P) is robust in N faults

D: ∄cm such as cm(P) is robust in N faults, but the attacks can be made more difficult

S: even making the attack more difficult is not possible [Given-Wilson and Legay, 2020]

Boespflug Placement of software countermeasures September 28, 2023 15 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Summary

The End

Thanks for watching

Boespflug Placement of software countermeasures September 28, 2023 15 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Lazart architecture

Boespflug Placement of software countermeasures September 28, 2023 15 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Summary

Robustness of placement depends on the property of the catalog C

P’ is guaranteed to be robust for N faults if the required protection coefficients (K) are available

→ if not, attack traces on P’ are known

→ more robust than P even if trace set is incomplete

Protection weight: distributed ≤ block ≤ min ≤ atk ≤ naive

→ Optimal placement is guaranteed with ILP

Algorithm Type Guarantees P′ Complexity Required analysis
Robust Optimal AA Red HS

naive syst. ✓ - O(t) ✓ - -
atk syst. ✓ - O(t) ✓ - -
min syst. ✓ - O(t) ✓ ✓ -
block block ✓ - O(t) ✓ ✓ ✓
opt distributed ✓ ✓ NP-Complete ✓ ✓ -

Placement algorithm is fast compared to trace generation (DSE)

→ even with optimal algorithm and ILP (1-fault attacks)

Boespflug Placement of software countermeasures September 28, 2023 16 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

memcmps3 program

Listing: Analysis’s main

1 // main.c
2 #include "lazart.h"
3 #include "memcmps.h"
4
5 #define SIZE 4
6
7 int main()
8 {
9 // Inputs
10 uint8_t a1[SIZE];
11 _LZ__SYM(a1, SIZE); // Symbolic array
12 uint8_t a2[SIZE];
13 _LZ__SYM(a2, SIZE); // Symbolic array
14
15 bool equals = true;
16 for(size_t i = 0; i < SIZE; ++i)
17 if(a1[i] != a2[i])
18 equals = false;
19 _LZ__ORACLE (!equal); // Consider only

different inputs
20
21 BOOL res = memcmps(a1, a2, SIZE); // Call

studied function
22
23 _LZ__ORACLE(res == TRUE); // Attack

objective
24 }

Listing: memcmps3 program

1 // memcmps.h
2 typedef BOOL uint16_t;
3 #define TRUE 0x1234u
4 #define FALSE 0x5678u
5 #define MASK 0xABCDu
6
7 // memcmps.c
8 #include "memcmps.h"
9

10 BOOL memcmps(uint8_t* a, uint8_t* b, size_t len)
11 {
12 BOOL result = FALSE;
13
14 if (! memcmp(a, b, len)) {
15 result ^= MASK; // result = FALSE

^ MASK
16 if (! memcmp(a, b, len)) {
17 result ^= FALSE ^ TRUE; // result = MASK ^

TRUE
18 if (! memcmp(a, b, len)) {
19 result ^= MASK; // result = TRUE
20 }
21 }
22 }
23
24 return result;
25 }

Boespflug Placement of software countermeasures September 28, 2023 16 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

References I

de Ferrière, F. (2019).

A compiler approach to cyber-security.
2019 European LLVM developers’ meeting.

Dureuil, L., Petiot, G., Potet, M., Le, T., Crohen, A., and de Choudens, P. (2016).

FISSC: A Fault Injection and Simulation Secure Collection.
In Computer Safety, Reliability, and Security - 35th International Conference, SAFECOMP 2016, Trondheim,
Norway, September 21-23, 2016, Proceedings, pages 3–11.

Given-Wilson, T. and Legay, A. (2020).

Formalising fault injection and countermeasures.
In Proceedings of the 15th International Conference on Availability, Reliability and Security, pages 1–11.

Kim, C. H. and Quisquater, J.-J. (2007).

Fault attacks for crt based rsa: New attacks, new results, and new countermeasures.
In IFIP International Workshop on Information Security Theory and Practices, pages 215–228. Springer.

Lalande, J., Heydemann, K., and Berthomé, P. (2014).

Software countermeasures for control flow integrity of smart card C codes.
In Pr. of the 19th European Symposium on Research in Computer Security, ESORICS 2014, pages 200–218.

Boespflug Placement of software countermeasures September 28, 2023 16 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

References II

Natella, R., Cotroneo, D., and Madeira, H. S. (2016).

Assessing Dependability with Software Fault Injection: A Survey.
ACM Computing Surveys, 48(3):1–55.

Potet, M.-L., Mounier, L., Puys, M., and Dureuil, L. (2014).

Lazart: A symbolic approach for evaluation the robustness of secured codes against control flow injections.
In 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation, pages
213–222. IEEE.

Wookey/SSTIC20 (2020).

Inter-cesti: Methodological and technical feedbacks on hardware devices evaluations.
https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_
technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_
on_hardware_devices_evaluations-benadjila.pdf.

Boespflug Placement of software countermeasures September 28, 2023 16 / 16

https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf
https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf
https://www.sstic.org/media/SSTIC2020/SSTIC-actes/inter-cesti_methodological_and_technical_feedbacks/SSTIC2020-Article-inter-cesti_methodological_and_technical_feedbacks_on_hardware_devices_evaluations-benadjila.pdf

