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Faults injection - Example on verify_pin

PIN verification program from FISSC collection
[Dureuil et al., 2016]

1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++) // Fault
6 if(a1[i] != a2[i])
7 ret = false;
8
9 if(i != size) // Countermeasure
10 killcard ();
11
12 return ret;
13 }
14
15 bool verify_pin(uchar* user_pin) {
16 if(try_counter > 0)
17 if(compare(user_pin , card_pin , PIN_SIZE)) {
18 // Authentication
19 try_counter = 3;
20 return true;
21 } else {
22 try_counter --;
23 return false;
24 }
25 return false;
26 }

Example of software fault model: Test
inversion

→ inverse the branch taken during
conditional branching

Software countermeasures
(program transformations) can be
placed to protect against faults
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1 bool compare(uchar* a1, uchar* a2 , size_t size)
2 {
3 bool ret = true;
4 size_t i = 0;
5 for(; i < size; i++) // Fault 1
6 if(a1[i] != a2[i])
7 ret = false;
8
9 if(i != size) // Fault 2 => countermeasure attack
10 killcard ();
11
12 return ret;
13 }
14
15 bool verify_pin(uchar* user_pin) {
16 if(try_counter > 0)
17 if(compare(user_pin , card_pin , PIN_SIZE)) {
18 // Authentication
19 try_counter = 3;
20 return true;
21 } else {
22 try_counter --;
23 return false;
24 }
25 return false;
26 }

Example of software fault model: Test
inversion

→ inverse the branch taken during
conditional branching

Software countermeasures (program
transformations) can be placed to
protect against faults

Multi-fault:

→ countermeasures themselves
can be attacked

→ require support for models
combination

Boespflug Placement of software countermeasures September 28, 2023 1 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Multiple faults

Lazart results on VerifyPIN collection

Lazart [Potet et al., 2014] is an LLVM-level multi-fault robustness
evaluation tool based on Dynamic-Symbolic Execution (KLEE).

Fault models

Test/Branch inversion

Data mutation (load) (symbolic)

verify_pin version (from FISSC [Dureuil et al., 2016]) countermeasures 0-faults 1-fault 2-faults 3-faults 4-faults
vp_0 ∅ 0 3 0 0 1
vp_1 HB 0 2 0 0 1
vp_2 HB+FTL 0 2 1 0 1
vp_3 HB+FTL+INL 0 2 1 0 1
vp_4 FTL+INL+DPTC+PTCBK+LC 0 2 0 1 1
vp_5 HB+FTL+DPTC+DC 0 0 4 4 1
vp_6 HB+FTL+INL+DPTC+DT 0 0 3 0 1
vp_7 HB+FTL+INL+DPTC+DT+SC 0 0 2 0 1

Legend:

HB: hardened booleans

FTL: fixed time loops

INL: inlined function

PTC: try counter
decremented first

PTCBK: try counter
backup

DC: double call

LC: loop counter
verification

SC: step counter

DT: double test

CFI: control flow integrity
[Lalande et al., 2014]

Boespflug Placement of software countermeasures September 28, 2023 2 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Multiple faults

Lazart results on VerifyPIN collection

Lazart [Potet et al., 2014] is an LLVM-level multi-fault robustness
evaluation tool based on Dynamic-Symbolic Execution (KLEE).

Fault models

Test/Branch inversion

Data mutation (load) (symbolic)

verify_pin version (from FISSC [Dureuil et al., 2016]) countermeasures 0-faults 1-fault 2-faults 3-faults 4-faults
vp_0 ∅ 0 3 0 0 1
vp_1 HB 0 2 0 0 1
vp_2 HB+FTL 0 2 1 0 1
vp_3 HB+FTL+INL 0 2 1 0 1
vp_4 FTL+INL+DPTC+PTCBK+LC 0 2 0 1 1
vp_5 HB+FTL+DPTC+DC 0 0 4 4 1
vp_6 HB+FTL+INL+DPTC+DT 0 0 3 0 1
vp_7 HB+FTL+INL+DPTC+DT+SC 0 0 2 0 1

Legend:

HB: hardened booleans

FTL: fixed time loops

INL: inlined function

PTC: try counter
decremented first

PTCBK: try counter
backup

DC: double call

LC: loop counter
verification

SC: step counter

DT: double test

CFI: control flow integrity
[Lalande et al., 2014]

Boespflug Placement of software countermeasures September 28, 2023 2 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Multiple faults

Multiple faults and countermeasures placement

State of the art attacks combine several faults to achieve their goal
[Kim and Quisquater, 2007], [Natella et al., 2016], [Wookey/SSTIC20, 2020]

Try-and-error approaches are unsuitable for multi-fault

→ countermeasures themselves can be attacked

→ testing all countermeasures placements is unrealistic

Several tools use systematic approach, which could lead to unnecessary
protections [Lalande et al., 2014, de Ferrière, 2019]

Probl.
How to help to place countermeasures and give guarantees on the protected program
in multi-fault context ?
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Multiple faults

Placement of software countermeasures

Goal: help to place countermeasures against multi-fault attacks wrt a set of fault
models M

Target robustness in (at least) N faults

Using a catalog of countermeasures schemes with Injection Point (IP) granularity

Approach: compositional analysis using:

1 Isolation analysis of protection schemes

→ Notion of adequacy and vulnerability level

2 Placement algorithms: select the protection to apply to each IP in the program

→ Using a representative set of attacks on the program wrt to M
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Principle of analysis in isolation

Analysis in isolation: reusable analysis of multi-fault behavior of
protection scheme

Single fault: verify that the protection scheme correctly blocks
successful attacks for the fault model m ∈ M (adequacy), with m the
fault model of the unprotected IP

Multi fault: research of the vulnerability level (vl) of the protection
scheme:

→ e.g. How many faults are required to induce an abnormal
behavior (not detected) for the protected IP ?

→ Unprotected IP has vl = 1

→ Can be computed with Lazart
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Analysis in isolation of Load Duplication scheme

Load Duplication: duplication of a load instruction

Isolation analysis with Test Inversion and Data Load fault models

Explore all faulted paths inside the Protection Scheme,
using symbolic entries (%var), M = {TI, DL} and ϕ =
%target stores v ̸= %var:

Ts (P, M): successful undetected attacks
Tc (P, M): detected attacks
Tn(P, M): nominal case
error cases are in Ts or Tc depending on the user

Vulnerability Level: Search of the minimal number of
faults required to invalidate the nominal behavior

→ vl = minimum number of faults in Ts(P, M)
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Vulnerability Level (vl) for Load Multiplication

Countermeasure 0-faults 1-fault 2-faults 3-faults vl
LM0 0 1 0 0 1
LM1 0 0 1 0 2
LM2 0 0 0 1 3

Table: Vulnerability Level of LMn

Countermeasure 0-faults 1-fault 2-faults 3-faults vl
BM0 0 1 0 0 1
BM1 0 0 1 0 2
BM2 0 0 0 1 3

Table: Vulnerability Level of BMn

The countermeasures BMn and TMn have vl = 1 + n
(verified for n ≤ 4 with Lazart)
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Systematic placement algorithms

Table: Principle of each placement algorithms

Approach Algorithm Description

Systematic naive All IPs in P are protected with vl > N
Systematic atk All IPs in attacks are protected with vl > N
Systematic min All IPs in minimal attacks are protected with vl > N
Block block At least one IP per minimal attacks is protected with vl > N

Distributed opt
Protection is distributed between the IPs in minimal
attacks, to get rid of attacks in less than N + 1 faults.

Naive placement algorithm (naive): protect all IPs in the program with vl > N:

1 Compute required vulnerability levels (vlip) for each IP (initialized to 1)

2 Generate P′ with protection scheme matching the required vulnerability levels

⇒ Using a catalog C of countermeasures (with computed vlip)

→ corresponds to standard systematic protection tools

→ does not require attacks paths

⇒ Use exploration of attack (Ts(P, M)) on P, with user-defined ϕ
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Compositional analysis placement

Isolation analysis for each considered
protection scheme with all studied fault models

Attacks path exploration on P gives guarantees
on which IP violation can lead to an attack

→ Here, IPA can be left unprotected if IPB is
protected

⇒ Protection can be distributed between the IPs
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Optimal distributed placement

Distribute protections of IPs inside (minimal) attacks traces to ensure at least N + 1 faults are required to obtain attacks

→ usable if the catalog C does not contains CM for vl > N

An Integer Linear Programming (ILP) optimization problem

→ attacks gives constraints on the protection to apply

Research of the optimal placement

⇒ minimize the protection weight Z = xa + xb + ... + xp

require to ensure that all states produced by the protected IPs are studied in trace exploration fault models

→ guarantees on partially protected IPs
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Experimentation - verify_pin

verify_pin [Dureuil et al., 2016] (VP): smart-card PIN verification process

fault model: Test Inversion (TI)

Exp. Algo.
∑

of protections Robust
Program Fault Model IPs 1-fault 2-faults 3-faults 4-faults

VP TI 8 naive 8 16 24 32 ✓
atk 3 8 12 16 ✓
min 3 8 12 16 ✓
block 3 6 9 12 ✓
opt 3 6 9 12 ✓

Boespflug Placement of software countermeasures September 28, 2023 11 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Experimentations - memcmps3

memcmps v3 (MCMPS): secure version of memcmp.

fault models: Test Inversion (TI) + Data Load (DL)

Exp. Algo.
∑

of protections Robust
Program Fault Model IPs 1-fault 2-faults 3-faults 4-faults

MCMPS TI 12 naive 12 24 36 48 ✓
atk 0 0 0 16 ✓
min 0 0 0 16 ✓
block 0 0 0 4 ✓
opt 0 0 0 1 ✓

MCMPS DL 15 naive 15 30 45 60 ✓
atk 1 6 15 32 ✓
min 1 6 15 32 ✓
block 1 4 6 8 ✓
opt 1 3 5 7 ✓

MCMPS TI + DL 27 naive 27 54 81 108 ✓
atk 1 8 24 56 ✓
min 1 8 24 56 ✓
block 1 6 9 12 ✓
opt 1 3 5 8 ✓
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Experimentations - FU1

firmware_updater v1 (FU): updates a firmware from remote source

fault models: Test Inversion (TI) + Data Load (DL)

Exp. Algo.
∑

of protections Robust
Program Fault Model IPs 1-fault 2-faults 3-faults 4-faults

fu1 TI 42 naive 42 84 126 168 ✓
atk 0 28 42 88 ✓
min 0 28 42 72 ✓
block 0 14 21 28 ✓
opt 0 7 14 21 ✓

DL 2 naive 2 4 6 8 ✓
atk 1 4 6 8 ✓
min 1 2 3 4 ✓
block 1 2 3 4 ✓
opt 1 2 3 4 ✓

TI+DL 44 naive 44 88 132 176 ✓
atk 1 32 60 96 ✓
min 1 32 60 80 ✓
block 1 16 24 32 ✓
opt 1 9 17 25 ✓
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Summary

Conclusion and Future Work

Conclusion:

Isolation analysis allows to reason about unprotected and protected IP out of the context of a
particular program

→ vulnerability level quantifies guarantees of the CM wrt a set of fault models

Placement algorithms gives strong guarantees, even if the trace set is incomplete

→ optimality of the placement guaranteed by ILP

Future Work:

Study of countermeasures propagating states (SSCF, Swift...)

→ may require to consider two isolation analysis cases: sane CM’s inputs and corrupted CM’s
inputs

Study of more complex CFG fault models

→ requires to take into account the several entry and output points of the protection scheme

Implementation of the approach on binary level

Lazart is planned to be released open-source (Nov 2023)
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Summary

Future Work - Model protectability

L: it exists an IP granularity countermeasures with vl > N for all N > 1 (Test Inversion, Data
Load mutation)

G: ∃cm such as cm(P) is robust in N faults

D: ∄cm such as cm(P) is robust in N faults, but the attacks can be made more difficult

S: even making the attack more difficult is not possible [Given-Wilson and Legay, 2020]
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Summary

The End

Thanks for watching
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Lazart architecture

Boespflug Placement of software countermeasures September 28, 2023 15 / 16



Context Analysis in isolation Placement algorithms Experimentation Conclusion and future work

Summary

Robustness of placement depends on the property of the catalog C

P’ is guaranteed to be robust for N faults if the required protection coefficients (K) are available

→ if not, attack traces on P’ are known

→ more robust than P even if trace set is incomplete

Protection weight: distributed ≤ block ≤ min ≤ atk ≤ naive

→ Optimal placement is guaranteed with ILP

Algorithm Type Guarantees P′ Complexity Required analysis
Robust Optimal AA Red HS

naive syst. ✓ - O(t) ✓ - -
atk syst. ✓ - O(t) ✓ - -
min syst. ✓ - O(t) ✓ ✓ -
block block ✓ - O(t) ✓ ✓ ✓
opt distributed ✓ ✓ NP-Complete ✓ ✓ -

Placement algorithm is fast compared to trace generation (DSE)

→ even with optimal algorithm and ILP (1-fault attacks)
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memcmps3 program

Listing: Analysis’s main

1 // main.c
2 #include "lazart.h"
3 #include "memcmps.h"
4
5 #define SIZE 4
6
7 int main()
8 {
9 // Inputs
10 uint8_t a1[SIZE];
11 _LZ__SYM(a1, SIZE); // Symbolic array
12 uint8_t a2[SIZE];
13 _LZ__SYM(a2, SIZE); // Symbolic array
14
15 bool equals = true;
16 for(size_t i = 0; i < SIZE; ++i)
17 if(a1[i] != a2[i])
18 equals = false;
19 _LZ__ORACLE (!equal); // Consider only

different inputs
20
21 BOOL res = memcmps(a1, a2, SIZE); // Call

studied function
22
23 _LZ__ORACLE(res == TRUE); // Attack

objective
24 }

Listing: memcmps3 program

1 // memcmps.h
2 typedef BOOL uint16_t;
3 #define TRUE 0x1234u
4 #define FALSE 0x5678u
5 #define MASK 0xABCDu
6
7 // memcmps.c
8 #include "memcmps.h"
9

10 BOOL memcmps(uint8_t* a, uint8_t* b, size_t len)
11 {
12 BOOL result = FALSE;
13
14 if (! memcmp(a, b, len)) {
15 result ^= MASK; // result = FALSE

^ MASK
16 if (! memcmp(a, b, len)) {
17 result ^= FALSE ^ TRUE; // result = MASK ^

TRUE
18 if (! memcmp(a, b, len)) {
19 result ^= MASK; // result = TRUE
20 }
21 }
22 }
23
24 return result;
25 }
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