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Context - Program Security Evaluation

❏ Code review
❏ Pen testing
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Manual, not exhaustive, time consuming

Automatic program analysis techniques
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Context - Formal Program Analysis
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❏ Formal methods → all possible behaviors are studied

❏ Verification specifications, bug finding or absence of bugs

❏ Industrial success for safety 

CBMC
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❏ Weak attacker model → can only craft smart inputs
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Real-world attackers are more powerful
❏ Various attack vectors → fault injection
❏ Side channels
❏ Multiple actions in one attack
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Our Goal

Our goal is to devise a technique to automatically and efficiently reason about the 
impact of an advanced attacker* onto a program security properties.

Challenges:

*attacker able to perform multi-fault injections
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C1: Formal framework

Impact of advanced 
attacker

C2: Efficient and 
generic algorithm

Multi-fault without path 
explosion
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State-of-the-Art: software-implemented fault injection

Mutant Generation 
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Forking technique

Fault

…

Potential fault 
injections

Scalability issues

Reuse existing 
analyzers

Few predefined fault models - no multi-fault - source level analysis



Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Contributions

❏ Formalize of the Adversarial Reachability problem

❏ Adversarial Symbolic Execution to answer adversarial reachability 

❏ a novel forkless fault encodings preventing path explosion

❏ 2 optimizations reducing query complexity

❏ Implementation and evaluation of our technique

❏ Security scenarios and security analysis of the WooKey bootloader
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Fault Injection Attacks Everywhere
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Electromagnetic pulses

Laser beam

Power glitch

Clock glitch

Hardware attacks

Rowhammer

DVFS

Faultline

Load Value InjectionRace condition

Spectre Binary rewriting

Halt and modify execution

Man-At-The-End attacks

Software-implemented hardware attacks

Link with data-only attacks

Micro-architectural attacks
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Model of an advanced attacker

1) A set of attacker actions (equivalent to fault models)
2) A maximum number of actions
3) A goal expressed as a reachability query
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Adversarial reachability

Adversarial reachability: A location l is adversarially reachable in a program P for 
an attacker model A if S0 ↦* l,
where ↦* is a succession of normal transitions interleaved with faulty transitions

Definition of correctness and completeness of an analysis w.r.t an attacker model
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input s0

state at location l faulted transition
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Forkless Adversarial Symbolic Execution (FASE)
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Design guideline Technical solution

Correct and k-complete for 
adversarial reachability

Based on Symbolic Execution

Prevent path explosion Forkless fault encoding

Reduce complexity of created 
formulas

Avoid introducing extra faults with 
2 optimizations

Faults on data Faults on control-flow
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x := y
x := y

x := faulti 
nbf ++

Non 
deterministic 
choice 

+  Covers all adversarial 
behaviors

-   #path exponential with #fault 
injection points

Symbolic 
execution

Forking 
technique

x := fault(y)

FASE

x := y + herei * faulti

x := ite herei ? faulti : y

+  Covers all adversarial 
behaviors

+   No extra path

-    More complex formulas
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➔ Forking explodes in explored paths while FASE doesn’t
➔ Translates to improved analysis time overall

Experimental Evaluation - Path explosion
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Optimizations

❏ Reduce #injection points to simplify formulas
❏ Remain correct and k-complete
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Early Detection of Fault Saturation (EDS)
Stop injection as soon as possible

Injection On Demand (IOD)
Add faults only when necessary

❏ SAT with a fault margin 
(nbf < maxf)

❏ SAT with exactly the fault 
budget (nbf == maxf)

❏ infeasible

No more fault injection

Start without any faults

Path predicate 

switch 
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Experimental Evaluation - Optimizations’ Impact

➔ EDS has a moderate impact
➔ IOD halves solving time per query (5745 →3050 avg ite /query) + most efficient 
➔ IOD+EDS is slightly more expensive
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Other Forkless Fault Models
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Evaluation

Implementation inside BINSEC for x86-32 and ARM architectures with SMT solver 
Bitwuzla

Benchmarks (RQ1 to 3) from [1, 2]

❏ RQ1: is our tool correct and k-complete? In particular, can we find attacks on 
vulnerable programs and prove secure resistant programs?

❏ RQ2: can we scale in number of faults?
❏ RQ3: what is the impact of our optimizations?
❏ Different security scenarios using different fault models
❏ Larger case study of the WooKey bootloader [ANSSI security challenge]
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[1] Dureuil et al. FISSC: A fault injection and simulation secure collection. 2016.
[2] Le et al. Resilience evaluation via symbolic fault injection on intermediate code. 2018
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BellCoRe attack on CRT-RSA

Goal: reproduce the evaluation of different CRT-RSA protections [1]

Attacker model: 1 reset fault
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[1] Puys et al. High-level simulation for multiple fault injection evaluation. 2014
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Secret keeping machine [1]

Goal: evaluate the impact of implementation on program vulnerability

Attacker model: 1 bit-flip in memory
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[1] Dullien Weird machines, exploitability, and provable unexploitability. 2017
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SecSwift [1] protection on VerifyPIN

Goal: evaluate the impact of the protection

Detail: partial implementation [2] only preventing the execution from deviating from 
the CFG.

Attacker model: 1 arbitrary data fault or 1 test inversion
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[1] de Ferrière Software countermeasures in the llvm risc-v compiler. 2021
[2] Lacombe et al. Combining static analysis and dynamic symbolic execution in 
a toolchain to detect fault injection vulnerabilities. 2021
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Neural Network

Goal: evaluate the robustness of a neural network (based on [1]) to fault injection

Attacker model: 1 bit-flip
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[1] Mathieu Dumont et al. Evaluation of parameter-based attacks
against embedded neural networks with laser injection. arXiv preprint, 2023 
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             Case study

WooKey bootloader [security challenge]: secure data storage by ANSSI, 3.2k loc

Attacker model: 1 arbitrary data — or test inversion with equivalent effect

1. Find known attacks (from source-level analysis)
a. Boot on the old firmware instead for the newest one [1]
b. A buffer overflow triggered by fault injection [1]
c. An incorrectly implemented countermeasure protecting against one test inversion [2]

2. Evaluate recent countermeasures [1]
a. Evaluate original code → We found an attack not mentioned before*
b. Evaluate existing protection scheme [1]
c. Propose and evaluate our own protection scheme
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[1] Lacombe et al. Combining static analysis and dynamic symbolic execution in a toolchain to detect fault injection 
vulnerabilities. 2021
[2] Martin et al. Verifying redundant-check based countermeasures: a case study. 2022

*After discussion with the authors 
[1], it turns out that they actually 
found this path but did not report it 
in the article, as they did not 
consider it as a real attack w.r.t. the 
Wookey challenge.
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❏ New formalization: Adversarial Reachability
❏ Efficient algorithm: FASE + forkless encoding + optimizations
❏ Implementation inside BINSEC
❏ Evaluation: path explosion mitigated + increased efficiency + broad usability.

Limitations: 
❏ no support for general instruction modifications
❏ no efficient algorithm for faults on addresses

Conclusion
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❏ Extend attacker model support and efficient algorithms
❏ Design a hybrid forking/forkless injection technique and heuristics
❏ Algorithm to find the minimal attacker for a program and a security property

Future perspectives
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C1: Formal Framework Adversarial Reachability

C2: Efficient Algorithm
Forkless Adversarial Symbolic Execution

(+ 2 optimizations)

Implementation

Evaluation Security Scenarios
Use Case: WooKey 

Bootloader


