
1

Adversarial Reachability
for Program-level Security Analysis

Soline Ducousso1, Sébastien Bardin1, Marie-Laure Potet2

1 Univ. Paris-Saclay, CEA, List, Saclay, France
2 Univ. Grenoble Alpes, VERIMAG, Grenoble, France

soline.ducousso@cea.fr, sebastien.bardin@cea.fr, marie-laure.potet@univ-grenoble-alpes.fr

(published at ESOP 2023)

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Context - Program Security Evaluation

❏ Code review
❏ Pen testing

2

Manual, not exhaustive, time consuming

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Context - Program Security Evaluation

❏ Code review
❏ Pen testing

3

Manual, not exhaustive, time consuming

Automatic program analysis techniques

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Context - Formal Program Analysis

4

❏ Formal methods → all possible behaviors are studied

❏ Verification specifications, bug finding or absence of bugs

❏ Industrial success for safety

CBMC

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

What About Security ?

Reuse standard safety analyzers:
❏ Useful (e.g., buffer overflows) and worst case
❏ Weak attacker model → can only craft smart inputs

5

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

What About Security ?

Reuse standard safety analyzers:
❏ Useful (e.g., buffer overflows) and worst case
❏ Weak attacker model → can only craft smart inputs

6

Real-world attackers are more powerful
❏ Various attack vectors → fault injection
❏ Side channels
❏ Multiple actions in one attack

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Our Goal

Our goal is to devise a technique to automatically and efficiently reason about the
impact of an advanced attacker* onto a program security properties.

Challenges:

*attacker able to perform multi-fault injections

7

C1: Formal framework

Impact of advanced
attacker

C2: Efficient and
generic algorithm

Multi-fault without path
explosion

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

State-of-the-Art: software-implemented fault injection

Mutant Generation

8

Forking technique

Fault

…

Potential fault
injections

Scalability issues

Reuse existing
analyzers

Few predefined fault models - no multi-fault - source level analysis

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Contributions

❏ Formalize of the Adversarial Reachability problem

❏ Adversarial Symbolic Execution to answer adversarial reachability

❏ a novel forkless fault encodings preventing path explosion

❏ 2 optimizations reducing query complexity

❏ Implementation and evaluation of our technique

❏ Security scenarios and security analysis of the WooKey bootloader

9

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 10

Introduction
Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation
Conclusion

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Fault Injection Attacks Everywhere

11

Electromagnetic pulses

Laser beam

Power glitch

Clock glitch

Hardware attacks

Rowhammer

DVFS

Faultline

Load Value InjectionRace condition

Spectre Binary rewriting

Halt and modify execution

Man-At-The-End attacks

Software-implemented hardware attacks

Link with data-only attacks

Micro-architectural attacks

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Model of an advanced attacker

1) A set of attacker actions (equivalent to fault models)
2) A maximum number of actions
3) A goal expressed as a reachability query

12

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Adversarial reachability

Adversarial reachability: A location l is adversarially reachable in a program P for
an attacker model A if S0 ↦* l,
where ↦* is a succession of normal transitions interleaved with faulty transitions

Definition of correctness and completeness of an analysis w.r.t an attacker model

13

input s0

state at location l faulted transition

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 14

Introduction
Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation
Conclusion

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Forkless Adversarial Symbolic Execution (FASE)

15

Design guideline Technical solution

Correct and k-complete for
adversarial reachability

Based on Symbolic Execution

Prevent path explosion Forkless fault encoding

Reduce complexity of created
formulas

Avoid introducing extra faults with
2 optimizations

Faults on data Faults on control-flow

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 16

x := y
x := y

x := faulti
nbf ++

Non
deterministic
choice

+ Covers all adversarial
behaviors

- #path exponential with #fault
injection points

Symbolic
execution

Forking
technique

x := fault(y)

FASE

x := y + herei * faulti

x := ite herei ? faulti : y

+ Covers all adversarial
behaviors

+ No extra path

- More complex formulas

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 17

➔ Forking explodes in explored paths while FASE doesn’t
➔ Translates to improved analysis time overall

Experimental Evaluation - Path explosion

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Optimizations

❏ Reduce #injection points to simplify formulas
❏ Remain correct and k-complete

18

Early Detection of Fault Saturation (EDS)
Stop injection as soon as possible

Injection On Demand (IOD)
Add faults only when necessary

❏ SAT with a fault margin
(nbf < maxf)

❏ SAT with exactly the fault
budget (nbf == maxf)

❏ infeasible

No more fault injection

Start without any faults

Path predicate

switch

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 19

Experimental Evaluation - Optimizations’ Impact

➔ EDS has a moderate impact
➔ IOD halves solving time per query (5745 →3050 avg ite /query) + most efficient
➔ IOD+EDS is slightly more expensive

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Other Forkless Fault Models

20

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 21

Introduction
Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation
Conclusion

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Evaluation

Implementation inside BINSEC for x86-32 and ARM architectures with SMT solver
Bitwuzla

Benchmarks (RQ1 to 3) from [1, 2]

❏ RQ1: is our tool correct and k-complete? In particular, can we find attacks on
vulnerable programs and prove secure resistant programs?

❏ RQ2: can we scale in number of faults?
❏ RQ3: what is the impact of our optimizations?
❏ Different security scenarios using different fault models
❏ Larger case study of the WooKey bootloader [ANSSI security challenge]

22

[1] Dureuil et al. FISSC: A fault injection and simulation secure collection. 2016.
[2] Le et al. Resilience evaluation via symbolic fault injection on intermediate code. 2018

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

BellCoRe attack on CRT-RSA

Goal: reproduce the evaluation of different CRT-RSA protections [1]

Attacker model: 1 reset fault

23

[1] Puys et al. High-level simulation for multiple fault injection evaluation. 2014

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Secret keeping machine [1]

Goal: evaluate the impact of implementation on program vulnerability

Attacker model: 1 bit-flip in memory

24

[1] Dullien Weird machines, exploitability, and provable unexploitability. 2017

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

SecSwift [1] protection on VerifyPIN

Goal: evaluate the impact of the protection

Detail: partial implementation [2] only preventing the execution from deviating from
the CFG.

Attacker model: 1 arbitrary data fault or 1 test inversion

25

[1] de Ferrière Software countermeasures in the llvm risc-v compiler. 2021
[2] Lacombe et al. Combining static analysis and dynamic symbolic execution in
a toolchain to detect fault injection vulnerabilities. 2021

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

Neural Network

Goal: evaluate the robustness of a neural network (based on [1]) to fault injection

Attacker model: 1 bit-flip

26

[1] Mathieu Dumont et al. Evaluation of parameter-based attacks
against embedded neural networks with laser injection. arXiv preprint, 2023

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

 Case study

WooKey bootloader [security challenge]: secure data storage by ANSSI, 3.2k loc

Attacker model: 1 arbitrary data — or test inversion with equivalent effect

1. Find known attacks (from source-level analysis)
a. Boot on the old firmware instead for the newest one [1]
b. A buffer overflow triggered by fault injection [1]
c. An incorrectly implemented countermeasure protecting against one test inversion [2]

2. Evaluate recent countermeasures [1]
a. Evaluate original code → We found an attack not mentioned before*
b. Evaluate existing protection scheme [1]
c. Propose and evaluate our own protection scheme

27

[1] Lacombe et al. Combining static analysis and dynamic symbolic execution in a toolchain to detect fault injection
vulnerabilities. 2021
[2] Martin et al. Verifying redundant-check based countermeasures: a case study. 2022

*After discussion with the authors
[1], it turns out that they actually
found this path but did not report it
in the article, as they did not
consider it as a real attack w.r.t. the
Wookey challenge.

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 28

Introduction
Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation
Conclusion

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

❏ New formalization: Adversarial Reachability
❏ Efficient algorithm: FASE + forkless encoding + optimizations
❏ Implementation inside BINSEC
❏ Evaluation: path explosion mitigated + increased efficiency + broad usability.

Limitations:
❏ no support for general instruction modifications
❏ no efficient algorithm for faults on addresses

Conclusion

29

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

❏ Extend attacker model support and efficient algorithms
❏ Design a hybrid forking/forkless injection technique and heuristics
❏ Algorithm to find the minimal attacker for a program and a security property

Future perspectives

30

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 31

C1: Formal Framework Adversarial Reachability

C2: Efficient Algorithm
Forkless Adversarial Symbolic Execution

(+ 2 optimizations)

Implementation

Evaluation Security Scenarios
Use Case: WooKey

Bootloader

