Adversarial Reachability
for Program-level Security Analysis

(published at ESOP 2023)

Soline Ducousso’, Sébastien Bardin', Marie-Laure Potet?

"Univ. Paris-Saclay, CEA, List, Saclay, France
2 Univ. Grenoble Alpes, VERIMAG, Grenoble, France
soline.ducousso@cea.fr, sebastien.bardin@cea.fr, marie-laure.potet@univ-grenoble-alpes.fr

\/m Iist_|

Context - Program Security Evaluation

4 Code review

) Manual, not exhaustive, time consumin
A Pen testing } 9

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 2
s

\/m Iist_|

Context - Program Security Evaluation

4 Code review

) Manual, not exhaustive, time consumin
A Pen testing } 9

‘ Automatic program analysis techniques

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 3

Context - Formal Program Analysis

A Formal methods = all possible behaviors are studied
A Verification specifications, bug finding or absence of bugs

[Industrial success for safety

AIRBUS @) 5 3WS GiAbsint

Software

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

@ K44 Rstree CBMC

t
_

\/m IistJ

What About Security ?

Reuse standard safety analyzers:
A Useful (e.g., buffer overflows) and worst case

1 Weak attacker model = can only craft smart inputs S ./exploit

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

\/m IistJ

What About Security ?

Reuse standard safety analyzers:
A Useful (e.g., buffer overflows) and worst case

d Weak attacker model = can only craft smart inputs S ./exploit

‘ Real-world attackers are more powerful
[d Various attack vectors = fault injection

A Side channels

4 Multiple actions in one attack

Adversarial Reachability for Program-level Security Analysis - JAIF 2023

\/m Iist_|

Our goal is to devise a technique to automatically and efficiently reason about the
impact of an advanced attacker* onto a program security properties.

Our Goal

Challenges:

C1: Formal framework C2: Efficient and
generic algorithm

Impact of advanced Multi-fault without path

attacker .
explosion
*attacker able to perform multi-fault injections
Adversarial Reachability for Program-level Security Analysis - JAIF 2023 7

\/m @ Iist_l

State-of-the-Art: software-implemented fault injection

Mutant Generation

/FaUIt

-
Q

/ analyzers

Forking technique

Potential fault
injections

O

Reuse existing

‘ Scalability issues

Few predefined fault models - no multi-fault - source level analysis

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 8

\/m Iist_|

Contributions

A Formalize of the Adversarial Reachability problem

A Adversarial Symbolic Execution to answer adversarial reachability

A anovel forkless fault encodings preventing path explosion

A 2 optimizations reducing query complexity

1 Implementation and evaluation of our technique

A Security scenarios and security analysis of the WooKey bootloader

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 9

\/m Iist_|

Introduction

Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation

Conclusion

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 10

\/m @ list

Fault Injection Attacks Everywhere

-
“

y ol

<A
%/ Hardware attacks - Software-implemented hardware attacks

~
% Electromagnetic pulses Power glitch Faultline Rowhammer

A
%’/ Clock glitch Laser beam Spectre Binary rewriting DVFS

Race condition Load Value Injection Halt and modify execution
1/
< Micro-architectural attacks Man-At-The-End attacks

’:"‘5.\
- D} Link with data-only attacks

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 "

\/m Iist_I

Model of an advanced attacker

1) A set of attacker actions (equivalent to fault models)
2) A maximum number of actions
3) A goal expressed as a reachability query

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 12
s

\/m IistJ

Adversarial reachability: A location Cis adversarially reachable in a program P for
an attacker model A if S =* ¢
where =* is a succession of normal transitions interleaved with faulty transitions

Adversarial reachability

input s

o\o—ro—ro—m—»@\

/

faulted transition state at location ¢

Definition of correctness and completeness of an analysis w.r.t an attacker model

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 13

\/m Iist_|

Introduction

Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation

Conclusion

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 14

\/m Iist_|

Forkless Adversarial Symbolic Execution (FASE)

Design guideline

Technical solution

Correct and k-complete for
adversarial reachability

Based on Symbolic Execution

Prevent path explosion

Forkless fault encoding

Reduce complexity of created
formulas

Avoid introducing extra faults with
2 optimizations

Faults on data

Faults on control-flow

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 15
s

Symbolic Forking Vi nstJ
: . FASE
execution technique

l !/ ggtr;rministic l x := fault(y)

l/ X =y /C D\choice l‘/

| - | x 1= fault | X:=y+here, “fault

l l nb, ++ l X :=ite here ? fault 1y
+ Covers all adversarial + Covers all adversarial
behaviors behaviors

- #path exponential with #fault T No extra path

Injection points - More complex formulas

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 16

Experimental Evaluation - Path explosion

Number of explored paths
=
o

103_

L

o——)

—— FASE
—— Forking
(O timeouts

3 4 6 8 10
Number of faults

1 2

Analysis time (in s)

105_

=
o
N

=
o
w

=
o
N

=
o
[}

\/m Iist_l

N

N
=

—— FASE

—— Forking
(O timeouts

=Y

-

1 2 3 4

6

8

Number of faults

=> Forking explodes in explored paths while FASE doesn’t
=> Translates to improved analysis time overall

10

17

\/m IistJ

Optimizations

A Reduce #injection points to simplify formulas
[d Remain correct and k-complete

Early Detection of Fault Saturation (EDS) Injection On Demand (IOD)
Stop injection as soon as possible Add faults only when necessary
A SAT with a fault margin Start without any faults l
l (nb, < max) i l
l O SAT with exactly the fault
/ budget (nb, == max) WK =
: : ™~
d infeasible l .
l Path predicate
T No more fault injection l switch
l Adversarial Reachability for Program-level Security Analysis - JAIF 2023 18

\/m @ Iist_l

Experimental Evaluation - Optimizations’ Impact

0.030
O 0.025 —
E _- 2 101_
S0 c
o.c 0.020 P @ —~
C — 7EX Q
S > ~ £
o o 0.0151 = ~—]
0n 5 7
%o- @, — FASE
o 0.010+ = —
°a —— FASE —— FASE-EDS+I0D T FASE-EDS
Z 0.005{ — FASE-EDS —— Forking < —— FASE-IOD
— FASE-IOD (O timeouts —— FASE-EDS+10D
0.000— : ' - ; : : 1001 : : . : ; ;
1 2 3 4 6 8 10 1 2 3 4 6 8 10
Number of faults Number of faults

=> EDS has a moderate impact

=> 10D halves solving time per query (5745 —3050 avg ite /query) + most efficient
=> |OD+EDS is slightly more expensive ©
s

\/m IistJ

Other Forkless Fault Models

Fault model original instruction | Forkless encoding
Arbitrary data | x := expr x :=1te fault_here ? fault_value : expr
Variable reset X s=Lexpr x :=ite fault_here ? 0200000000 : expr
Variable set X s=Lexpr x := ite fault_here 7 OxfHiftff : expr
. X s=1expr x :=ite fault_here ?
Bit-flip (expr ior 1 << fault_value) : expr
if cdt if (ite fault_here ? —cdt : cdt)
Test inversion then goto addr, then goto addry
else goto addrs else goto addrsy
x = expr x :=ite fault_here 7 x : expr
Instruction skip | jump addr if fault_here then jump next
else jump addr

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 20

\/m Iist_|

Introduction

Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation

Conclusion

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 21

\/m IistJ

Implementation inside BINSEC for x86-32 and ARM architectures with SMT solver
Bitwuzla

Benchmarks (RQ1to 3) from [1, 2]

Evaluation

RQ1: is our tool correct and k-complete? In particular, can we find attacks on
vulnerable programs and prove secure resistant programs?

RQ2: can we scale in number of faults?

RQ3: what is the impact of our optimizations?

Different security scenarios using different fault models

Larger case study of the WooKey bootloader [ANSSI security challenge]

ool O

[1] Dureuil et al. FISSC: A fault injection and simulation secure collection. 2016.
[2] Le et al. Resilience evaluation via symbolic fault injection on intermediate code. 2018

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 22

\/m IistJ

BellCoRe attack on CRT-RSA

Goal: reproduce the evaluation of different CRT-RSA protections [1]

Attacker model: 1 reset fault

Version Ground truth | Result

CRT-RSA basic Insecure Insecure v/

CRT-RSA Shamir Insecure Time-out without finding attacks X
CRT-RSA Aumuller | Secure Time-out without finding attacks v

[1] Puys et al. High-level simulation for multiple fault injection evaluation. 2014

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 23
s

Secret keeping machine [1]

\/m IistJ

Goal: evaluate the impact of implementation on program vulnerability

Attacker model: 1 bit-flip in memory

Version

Attacker model Ground truth

Result

Linked-list | 1 bit-flip in memory | Insecure

Array
Array

1 bit-flip in memory | Secure
1 bit-flip anywhere | Insecure

Insecure v
Secure v
Insecure v

[1] Dullien Weird machines, exploitability, and provable unexploitability. 2017

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 24

\/m Iist_|

SecSwift [1] protection on VerifyPIN

Goal: evaluate the impact of the protection

Detail: partial implementation [2] only preventing the execution from deviating from
the CFG.

Attacker model: 1 arbitrary data fault or 1 test inversion

Version ‘ Ground truth | Result
VerityPIN_0 with SecSwift ‘ Insecure | Insecure v/

[1] de Ferriére Software countermeasures in the llvm risc-v compiler. 2021
[2] Lacombe et al. Combining static analysis and dynamic symbolic execution in
a toolchain to detect fault injection vulnerabilities. 2021

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 25

\/m IistJ

Goal: evaluate the robustness of a neural network (based on [1]) to fault injection

Neural Network

Attacker model: 1 bit-flip

Version | Ground truth ‘ Result
Neural Network ‘ Insecure ‘ Insecure v

[1] Mathieu Dumont et al. Evaluation of parameter-based attacks
against embedded neural networks with laser injection. arXiv preprint, 2023

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 26
s

\/m IistJ

WookKey bootloader [security challenge]: secure data storage by ANSSI, 3.2k loc

Case study

Attacker model: 1 arbitrary data — or test inversion with equivalent effect

1. Find known attacks (from source-level analysis)

a. Boot on the old firmware instead for the newest one [1]
b. A buffer overflow triggered by fault injection [1]
c. Anincorrectly implemented countermeasure protecting against one test inversion [2]

2. Evaluate recent countermeasures [1]

*After discussion with the authors

a. Evaluate original code = We found an attack not mentioned before* [1], it turns out that they actually
Eval — . h 1 found this path but did not report it
b. valuate existing protection scheme [1] in the article, as they did not

c. Propose and evaluate our own protection scheme consider it as a real attack w.r.t. the
Wookey challenge.

[1] Lacombe et al. Combining static analysis and dynamic symbolic execution in a toolchain to detect fault injection
vulnerabilities. 2021
[2] Martin et al. Verifying redundant-check based countermeasures: a case study. 2022 27

\/;m list_|

Introduction

Adversarial Reachability Formalization
Forkless Adversarial Symbolic Execution
Experimental Evaluation

Conclusion

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 28

\/m Iist_I

Conclusion

A New formalization: Adversarial Reachability
A Efficient algorithm: FASE + forkless encoding + optimizations
A Implementation inside BINSEC

[Evaluation: path explosion mitigated + increased efficiency + broad usability.

Limitations:

A no support for general instruction modifications
d no efficient algorithm for faults on addresses

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 29

\/m Iist_I

Future perspectives

1 Extend attacker model support and efficient algorithms
A Design a hybrid forking/forkless injection technique and heuristics
A Algorithm to find the minimal attacker for a program and a security property

Adversarial Reachability for Program-level Security Analysis - JAIF 2023 30

\/m Iist_|

C1: Formal Framework

Adversarial Reachability

I
Forkless Adversarial Symbolic Execution
I y

C2: Efficient Algorithm (+ 2 optimizations)

Implementation
Py

Evaluation Security Scenarios
Use Case: WooKey
Bootloader
[[
|

| & BINSEC

Adversarial Reachability for Program-level Security £

JAIF 2023 31

