
SAMVA: Static Analysis for Multi-Fault
Attack Paths Determination

Antoine Gicquel Univ Rennes, Inria, CNRS, IRISA, France

Damien Hardy Univ Rennes, Inria, CNRS, IRISA, France

Karine Heydemann Thales | Sorbonne Université / LIP6, France

Erven Rohou Univ Rennes, Inria, CNRS, IRISA, France

28/09/2023 - JAIF 2023

Fault injection attacks

Adversary goals

● Leak critical data

● Break cryptographic properties

● Take over a device

Fault injection for control-flow hijacking

● Execute authentication code

● Avoid countermeasures

BOOL verifyPIN() {
 g_authenticated = 0;

 if(g_ptc > 0) {
 if(byteArrayCompare(...) == 1) {
 g_ptc = 3;
 g_authenticated = 1;
 return 1;
 } else {
 g_ptc--;
 return 0;
 }
 }

 return 0;
}

Example with a source code in C

2/13

Fault injection attacks

Adversary goals

● Leak critical data

● Break cryptographic properties

● Take over a device

Fault injection for control-flow hijacking

● Execute authentication code

● Avoid countermeasures

BOOL verifyPIN() {
 g_authenticated = 0;

 if(g_ptc > 0) {
 if(byteArrayCompare(...) == 1) {
 g_ptc = 3;
 g_authenticated = 1;
 return 1;
 } else {
 g_ptc--;
 return 0;
 }
 }

 return 0;
}

Example with a source code in C

2/13

Fault injection attacks

Adversary goals

● Leak critical data

● Break cryptographic properties

● Take over a device

Fault injection for control-flow hijacking

● Execute authentication code

● Avoid countermeasures

BOOL verifyPIN() {
 g_authenticated = 0;

if(g_ptc > 0) {
if(byteArrayCompare(...) == 1) {

 g_ptc = 3;
 g_authenticated = 1;
 return 1;
 } else {
 g_ptc--;
 return 0;
 }
 }

 return 0;
}

Example with a source code in C

2/13

Fault injection attacks

Adversary goals

● Leak critical data

● Break cryptographic properties

● Take over a device

Fault injection for control-flow hijacking

● Execute authentication code

● Avoid countermeasures

How to assess the robustness

of a software against fault injection?

BOOL verifyPIN() {
 g_authenticated = 0;

if(g_ptc > 0) {
if(byteArrayCompare(...) == 1) {

 g_ptc = 3;
 g_authenticated = 1;
 return 1;
 } else {
 g_ptc--;
 return 0;
 }
 }

 return 0;
}

Example with a source code in C

2/13

Contribution: SAMVA

● Static analysis method: Finding attack paths semi-automatically

● Multiple instruction-skip fault model: Faults with a variable width

● Accessibility exploit model: Reach and avoid specified regions of code binary

3/13

Fault model: multiple instruction-skip

Fault Parameters B2:
0x10510: str r0, [fp, #-12]
0x10514: ldr r3, [fp, #-12]
0x10518: cmp r3, #4
0x1051c: bgt 10530
B3:
0x10520: ldr r3, [fp, #-8]
0x10524: add r3, r3, #1
0x10528: str r3, [fp, #-8]
0x1052c: b 1053c
B4:
0x10530: ldr r3, [fp, #-8]
0x10534: sub r3, r3, #1
0x10538: str r3, [fp, #-8]
...

4/13

Fault model: multiple instruction-skip

Fault Parameters

● Minimal width of a fault

fw_min, e.g. = 2

● Maximal width of a fault

fw_max, e.g. = 4

B2:
0x10510: str r0, [fp, #-12]
0x10514: ldr r3, [fp, #-12]
0x10518: cmp r3, #4
0x1051c: bgt 10530
B3:
0x10520: ldr r3, [fp, #-8]
0x10524: add r3, r3, #1
0x10528: str r3, [fp, #-8]
0x1052c: b 1053c
B4:
0x10530: ldr r3, [fp, #-8]
0x10534: sub r3, r3, #1
0x10538: str r3, [fp, #-8]
...

fw_min

fw_max

4/13

Fault model: multiple instruction-skip

Fault Parameters

● Minimal width of a fault

fw_min, e.g. = 2

● Maximal width of a fault

fw_max, e.g. = 4

● Minimal distance between two faults

fw_min_dist, e.g. = 5

B2:
0x10510: str r0, [fp, #-12]
0x10514: ldr r3, [fp, #-12]
0x10518: cmp r3, #4
0x1051c: bgt 10530
B3:
0x10520: ldr r3, [fp, #-8]
0x10524: add r3, r3, #1
0x10528: str r3, [fp, #-8]
0x1052c: b 1053c
B4:
0x10530: ldr r3, [fp, #-8]
0x10534: sub r3, r3, #1
0x10538: str r3, [fp, #-8]
...

fw_min

fw_max

distance

4/13

Fault effects

Fault Parameters

● Minimal width of a fault

fw_min, e.g. = 2

● Maximal width of a fault

fw_max, e.g. = 4

● Minimal distance between two faults

fw_min_dist, e.g. = 5

Predictable path w.o. data-flow analysis

B2:
0x10510: str r0, [fp, #-12]
0x10514: ldr r3, [fp, #-12]
0x10518: cmp r3, #4
0x1051c: bgt 10530
B3:
0x10520: ldr r3, [fp, #-8]
0x10524: add r3, r3, #1
0x10528: str r3, [fp, #-8]
0x1052c: b 1053c
B4:
0x10530: ldr r3, [fp, #-8]
0x10534: sub r3, r3, #1
0x10538: str r3, [fp, #-8]
...

4/13

Fault effects

Fault Parameters

● Minimal width of a fault

fw_min, e.g. = 2

● Maximal width of a fault

fw_max, e.g. = 4

● Minimal distance between two faults

fw_min_dist, e.g. = 5

Predictable path w.o. data-flow analysis

● Conditional jumps: systematically skipped

B2:
0x10510: str r0, [fp, #-12]
0x10514: ldr r3, [fp, #-12]
0x10518: cmp r3, #4
0x1051c: bgt 10530
B3:
0x10520: ldr r3, [fp, #-8]
0x10524: add r3, r3, #1
0x10528: str r3, [fp, #-8]
0x1052c: b 1053c
B4:
0x10530: ldr r3, [fp, #-8]
0x10534: sub r3, r3, #1
0x10538: str r3, [fp, #-8]
...

4/13

Fault effects

Fault Parameters

● Minimal width of a fault

fw_min, e.g. = 2

● Maximal width of a fault

fw_max, e.g. = 4

● Minimal distance between two faults

fw_min_dist, e.g. = 5

Predictable path w.o. data-flow analysis

● Conditional jumps: systematically skipped

● Unconditional jumps: executed or skipped

B2:
0x10510: str r0, [fp, #-12]
0x10514: ldr r3, [fp, #-12]
0x10518: cmp r3, #4
0x1051c: bgt 10530
B3:
0x10520: ldr r3, [fp, #-8]
0x10524: add r3, r3, #1
0x10528: str r3, [fp, #-8]
0x1052c: b 1053c
B4:
0x10530: ldr r3, [fp, #-8]
0x10534: sub r3, r3, #1
0x10538: str r3, [fp, #-8]
...

4/13

Fault effects

Fault Parameters

● Minimal width of a fault

fw_min, e.g. = 2

● Maximal width of a fault

fw_max, e.g. = 4

● Minimal distance between two faults

fw_min_dist, e.g. = 5

Predictable path w.o. data-flow analysis

● Conditional jumps: systematically skipped

● Unconditional jumps: executed or skipped

Reflect these effects on the CFG

B2:
0x10510: str r0, [fp, #-12]
0x10514: ldr r3, [fp, #-12]
0x10518: cmp r3, #4
0x1051c: bgt 10530
B3:
0x10520: ldr r3, [fp, #-8]
0x10524: add r3, r3, #1
0x10528: str r3, [fp, #-8]
0x1052c: b 1053c
B4:
0x10530: ldr r3, [fp, #-8]
0x10534: sub r3, r3, #1
0x10538: str r3, [fp, #-8]
...

4/13

Fault effects modeling

1) Retrieve the initial control flow graph (CFG)

5/13

Fault effects modeling

1) Retrieve the initial control flow graph (CFG)

2) Remove edges: BB ending with conditional jump

5/13

Fault effects modeling

1) Retrieve the initial control flow graph (CFG)

2) Remove edges: BB ending with conditional jump

3) Add new edges: BB ending with unconditional jump

5/13

Fault effects modeling

1) Retrieve the initial control flow graph (CFG)

2) Remove edges: BB ending with conditional jump

3) Add new edges: BB ending with unconditional jump

4) Annotate edges with a sequence of “types”

● One type per instruction of the source BB

○ execute (e): must be executed

○ skip (s): must be skipped

○ neutral (n): can be either skipped or executed

5/13

Attack paths finding

● Build a set of candidate paths

Example: Targeted basic blocks = [foo; B4]

B1 – foo – B2 – B3 – B4

6/13

Attack paths finding

● Build a set of candidate paths

Example: Targeted basic blocks = [foo; B4]

B1 – foo – B2 – B3 – B4

● Build an execution trace

○ List of tuples <address, type>

○ nnnnne + nnnnnnnne + nnnns + nnns

6/13

Attack paths finding

● Build a set of candidate paths

Example: Targeted basic blocks = [foo; B4]

B1 – foo – B2 – B3 – B4

● Build an execution trace

○ List of tuples <address, type>

○ nnnnne + nnnnnnnne + nnnns + nnns

● Fault positioning

Determine N set of faults {(position, width)}

making the path feasible

6/13

● Conditions for set of faults (a.k.a solution) to be valid

○ All instructions typed skip are covered by a fault

○ No instruction typed execute is covered by a fault

○ Faults widths ∈ [fw_min, fw_max]

○ Distances between two faults ≥ fw_min_dist

Fault positioning algorithm

Execution trace example
(fw_min = 4, fw_max = 8

fw_min_dist = 4)

7/13

0x104F8: execute
0x104FC: neutral
0x10500: neutral
0x10504: skip
0x10508: skip
0x1050C: neutral
0x10510: execute
0x10514: neutral
0x10518: neutral
0x1051C: skip
0x10520: skip
0x10524: neutral
0x10528: neutral
0x1052C: skip
0x10530: neutral
0x10534: neutral
0x10538: neutral

Fault positioning algorithm

● Conditions for set of faults (a.k.a solution) to be valid

○ All instructions typed skip are covered by a fault

○ No instruction typed execute is covered by a fault

○ Faults widths ∈ [fw_min, fw_max]

○ Distances between two faults ≥ fw_min_dist

● Solutions are built incrementally with a backtracking approach

● At the end, we obtain N execution traces along with the position

and the width of the faults for each

0x104F8: execute
0x104FC: neutral
0x10500: neutral
0x10504: skip
0x10508: skip
0x1050C: neutral
0x10510: execute
0x10514: neutral
0x10518: neutral
0x1051C: skip
0x10520: skip
0x10524: neutral
0x10528: neutral
0x1052C: skip
0x10530: neutral
0x10534: neutral
0x10538: neutral

Execution trace example
(fw_min = 4, fw_max = 8

fw_min_dist = 4)

7/13

Experimentation: Objective & Setup

Experimentation objective

Ensure that the attack paths found by

SAMVA are really effective

Modified version of gem5 allowing the
simulation of instruction-skips

8/13

Experimentation: Objective & Setup

Experimentation objective

Ensure that the attack paths found by

SAMVA are really effective

● Benchmark: VerifyPIN suite

○ FISCC [Dureuil et al. SAFECOMP 2016]

○ 8 implementations with increasing level of

countermeasures

● Tested with a large set of fault parameters

○ 3366 different faults parameters per binary

○ At most 30 attack paths per fault parameters

○ Simulate attacks until one succeed

Modified version of gem5 allowing the
simulation of instruction-skips

8/13

Validation methodology

Before Simulation

● Early rejection

Fault parameters not suited for the binary

● No Path found

After Simulation

● Execution crashes due to faults

e.g. Illegal load from address stored in a register

● Validated attack

Authenticated && Traces are equal

9/13

No path
found

Early
rejection

0

Expected trace

{(pos,width)}

Executed trace
+

Output

Crash

Classification of attack path searches

● All versions are vulnerable

● Versions V4 and V7 are the most robust

implementations

● Remark: Facilitate fault positioning by

↘fw_min, ↗fw_max and ↘fw_min_dist

→ SAMVA is able to find numerous

attacks paths for all versions

10/13

Analysis time

Time needed to generate the paths for each considered fault parameter

● Time taken to find up to 30 attack paths

● Xeon Gold 5218 2.3 GHz - 32 physical cores

→Most of the results are under

the threshold of half a second

11/13

Number of faults needed for each successful attack

● Only 1 fault: V0 to V3, V5 and V6

● At least 2 faults: V4

● At least 3 faults: V7

→ SAMVA is able to find attack paths with

multiple faults when it is required

12/13

Conclusion

● SAMVA
Framework based only on static analysis for

determining attack paths in presence of multiple

instruction-skip faults

● Evaluation
Attack paths found for all the 1 + 7 hardened versions

of PIN code verification

● Future work
- Extension of supported fault models

→ “instruction replay”

- Make the link with fault injection platform

● More details in the COSADE 23 paper !

13/13

	Slide 1: SAMVA: Static Analysis for Multi-Fault Attack Paths Determination
	Slide 2: Fault injection attacks
	Slide 3: Fault injection attacks
	Slide 4: Fault injection attacks
	Slide 5: Fault injection attacks
	Slide 6: Contribution: SAMVA
	Slide 7: Fault model: multiple instruction-skip
	Slide 8: Fault model: multiple instruction-skip
	Slide 9: Fault model: multiple instruction-skip
	Slide 10: Fault effects
	Slide 11: Fault effects
	Slide 12: Fault effects
	Slide 13: Fault effects
	Slide 14: Fault effects modeling
	Slide 15: Fault effects modeling
	Slide 16: Fault effects modeling
	Slide 17: Fault effects modeling
	Slide 18: Attack paths finding
	Slide 19: Attack paths finding
	Slide 20: Attack paths finding
	Slide 21: Fault positioning algorithm
	Slide 22: Fault positioning algorithm
	Slide 23: Experimentation: Objective & Setup
	Slide 24: Experimentation: Objective & Setup
	Slide 25: Validation methodology
	Slide 26: Classification of attack path searches
	Slide 27: Analysis time
	Slide 28: Number of faults needed for each successful attack
	Slide 29: Conclusion
	Slide 30

