Developments in the security of energy management
modules against remote fault injection attacks
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”ﬂl IETR From Secure Elements to Trusted Execution Environments

Secure Element Complex Systems (SoCs, servers, etc.)

e Simple system
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Hﬂ‘ IETR Power-management-based attacks

Attacker model Attack
» Software attacker, high privilege * Through energy management mechanisms, the
(controls drivers) attacker controls the CPU’s frequency & voltage
e Target: trusted application executed on -> Clock / Voltage glitch

the same applicative multicore CPU . . .
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1Mahmoud et al., DFAulted: Analyzing and Exploiting CPU Software Faults Caused by
FPGA-Driven Undervolting Attacks, /EEE Access, vol. 10, 2022.




Hﬂ‘ IETR Energy management mechanisms

DVFS (Dynamic Voltage and Frequency Scaling)
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Tang et al., CLKScrew: Exposing the Perils of Security-Oblivious Energy Management, USENIX Security 17, 2017. A



Hﬂ| |ETR Results

First attac.k: FLKScrew (2017) _ s Vulnerable platforms and TEEs
- Many similar attacks have been published + A wide range of Arm Trustzone-based SoCs 12
* New target platforms * Intel CPUs protected by SGX %> (Skylake)

* New attack scenarios

Main fault model: The result of some operations is faulted (multiplications, vector operations, encryption)

Compromised security properties

Confidentiality Integrity Authenticity Availabilit
— Cipher keys stored in — Out-of-Bounds — Forcefully launched . v :
. A ] — Denial-of-Service
the TEE extracted using memory access ill-signed programs in ttacks?
DFAL24 provoked? the TEE12

1Tang et al., CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management, USENIX Security 17, 2017.
2Qju et al., Voltlockey: Breaching TrustZone by Software-Controlled Voltage Manipulation over Multi-core Frequencies, AsianHOST, 2019.

3 Noubir et al., Towards Malicious Exploitation of Energy Management Mechanisms, DATE 2020.
4Murdock et al., Plundervolt: Software-based Fault Injection Attacks against Intel SGX, IEEE Symposium on Security and Privacy (SP), 2020.

3Kenjar et al., VOLTpwn: Attacking x86 Processor Integrity from Software, USENIX Security 20, 2020.
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Hﬂ[ |ETR Limits of DVFS attacks

Voltage regulators can be imprecise
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Re-printed from: Juffinger et al., SUIT: Secure Undervolting with Instruction Traps, 29th
ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, 2024
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Hﬂl |ETR Potential evolutions

e Combination with other attacks

* Power management hardware evolution
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Hﬂl IETR Approaches to countering DVFS attacks
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IIIII IETR DVFS attacks countermeasures — First approach
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Zhang et al., Blacklist Core: Machine-Learning Based Dynamic Operating-Performance-Point Blacklisting for Mitigating Power-Management Security Attacks, ISLPED '18:
International Symposium on Low Power Electronics and Design, 2018
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IIJIII IETR DVFS attacks countermeasures — Second approach
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Re-printed from Liang et al., ReVIVal: A Variation-Tolerant Architecture
Using Voltage Interpolation and Variable Latency, 2008 International
Symposium on Computer Architecture (a)
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rml IETR DVFS attacks countermeasures — Third approach

@ 0,0
o | T
Power A T 4
, — | |
Management : ) b Trusted
> @ '~ Program
c1 P
cu —1 .o
r—-r-------"-—-=-—-"--"-"—-—---"—---—-—-"-—-—-—-"—- - -—- - - ---"-"”"-""”-—"”"-"- - - -r--—-—--—----—_———_———_—-——_——_—_—_—_——_—_—_—__—___—_—_—_——— |

i - Well-known methods: redundancy, infection, error detection codes, etc.!
| —> Identify vulnerable code sections?

: —> Insert new instructions to protect against attacks3

e Heavy impact on performances

e Useful against other fault injection attacks

INSA
1Tao et al., Software Countermeasures against DVFS fault Attack for AES, 10th International Conference on Dependable Systems and Their Applications (DSA), 2023.
2Zhang et al., iATPG: Instruction-level Automatic Test Program Generation for Vulnerabilities under DVFS attack, /IEEE 25th International Symposium on On-Line Testing and W Nantes &

Robust System Design (IOLTS), 2019
3Kogler et al., Minefield: A Software-only Protection for SGX Enclaves against DVFS Attacks, 31st USENIX Security Symposium (USENIX Security 22), 2023 l
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Hﬂ| |ETR Conclusions
DVFS attacks: an important threat / \

. .. : Survey article
* Wide range of vulnerable applications and devices

* Software attack - remote and mass exploitation Do not Trust Power Management: A Survey on
Internal Energy-based Attacks Circumventing

Many possible evolutions Trusted Execution Environments Security

— Impact of the evolution of power management Properties
mechanisms on the attack surface? (Pre-print available on arXiV:
—> What are the other ways to control voltage & )

frequency? \ /

Prospects for countermeasures

 Arm Trustzone, Intel SGX: limited and specific
countermeasures
—> How to design TEE implementations that are

fundamentally secure against software-induced hardware
attacks?

Thanks for your attention!

* RISC-V TEEs are an opportunity
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