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Reversing abstraction descent is approximate
Coverage (fictional)
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Morality: the cost of modeling at high-level

Approximating undermines security guarantees:
▶ Software protections for models at assembly level bypassed with micro-arch abuse.

[Yuc+16]

In a perfect world...

1. Stop fault models’ approximations at assembly level or lower
2. Make software generate secure code (tank complexity with semantics)

Reality check: need more theoretical foundations, and old tech (e.g. C) is not helping.
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From low-level fault modeling (...) to a proven hardening scheme

Published: CC’24 [MDG24]
https://hal.science/hal-04438994

▶ Study a low-level fault model
▶ “Fetch skips”
▶ More accurate than instruction skips

▶ Design a proven countermeasure
▶ Aware of low-level behaviors NEW

▶ Coded in LLVM/ld, tested in QEMU

▶ Based on compiler/hardware collaboration
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Fetch skips
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Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32S&R32
▼ ▼

g+16:

lw ra, 16(sp)

int g(int x) {
return f(x) + 1;

}

16-bit instructions
Aligned 32-bit instructions
Unaligned 32-bit instructions
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(lw cont.) addi sp, sp, 16(lw cont.) addi sp, sp, 16

c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:S32

S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Microarchitectural-level

▶ Skip 32 bits:
Skip a full row.

▶ Skip and repeat 32 bits:
Replace a row with predecessor.

Found by Alshaer et al. [Als+22]

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 5/14



Introduction Fetch skips The countermeasure Implementation Conclusion
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g:
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S32
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S32

g+12:

S32S&R32
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g+16:

lw ra, 16(sp)

Annoying consequences:
▶ Skip one instruction
▶ Skip two instructions
▶ Corrupt parameters
▶ Craft a new instruction
▶ Craft multiple instructions (!)
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What security property can we achieve here?

▶ We inherently can’t prevent the attack altogether.
▶ Ideally: recovery, clean detection
▶ Here: prevent attacker from exploiting corrupted states

Fetch skips hardening property

After a fetch skip, the program will stop/crash before the end of the current block.

How?
1. Hardware will compute a checksum of each executed block.
2. Software will compare with expected value.
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The countermeasure
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The countermeasure: software / hardware opcode checksums.

Original block, except jump

Original jump

c.addi sp, sp, -16 c.sw ra, 12(sp)

ccscall NEW (ccscall cont.)

0x354c 0xc606

call f (call cont.)

c.ebreak c.ebreak

c.ebreak c.ebreak

g:

g+4:

g+8:

g+12:

g+16:

g+24:
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The countermeasure: software / hardware opcode checksums.

Original block, except jump

Original jump

Checksum test (needed to jump )
Sum of lines computed by linker.
Exception if mismatch at runtime.

Wall of trap instructions
Added by compiler.
Prevents escape from block.
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The countermeasure: software / hardware opcode checksums.

Binary encoding:

41 11 06 c6

+ 0b 24 00 00

= 4c 35 06 c6
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The countermeasure: software / hardware opcode checksums.

Intuition for security:

Hardware traps on jump
unless the previous instruction
was ccs/ccscall and it passed.

Too long to be jumped over (12 bytes)
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0x354c 0xc606

call f (call cont.)
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Key design points

[Hardware] RISC-V ISA extension:
▶ Updates a checksum register for each instruction executed
▶ One instruction for checksum tests, required before a jump
▶ Hardware support reasonable

▶ Tiny extension for a modular architecture (RISC-V)
▶ No software-only option anyway

[Software] Compiler and linker:
▶ Provides checksum code and walls
▶ Linker computes checksums and shuts down two attacks by avoiding values that

decode as jumps or checksum instructions

NEW
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Formal semantics and proof of security

▶ To reason about the attack, extend the semantics of assembler! NEW

▶ Describe how fetches work to clear the abstraction gap

▶ Fetch rules (right): describe fetches + attacks
▶ Step rules (not shown): decoding/execution

Proven security guarantee

If you fetch skip, the program will stop/crash before
the end of the current block.
Same for multi-fault attacks (unless checksum
collision–usually impossible).

NOFAULT

(PC, ρ) a ⇒ [a] (PC, [a])

S32(k) 1 < k ≤ N

(PC, ρ) a ⇒ [a+ 4k] (PC + 4k, [a+ 4k])

S&R32 ρ ̸= [a]

(PC, ρ) a ⇒ ρ (PC, [a])
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Implementation
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Implementation: a multi-stage process

clang

C source code

LLVM

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime
GNU ld

Executable code

MachineFunctionPass: ccs/trap emission + alignment

Static relaxation: code size bounded
Emitter: Late jump expansion + relocation emission

Relocation: Checksum computation and adjustment

clang --target=riscv32 -march=rv32gc -mabi=ilp32d
-mcpu=generic-rv32-fsh
-mllvm --riscv-enable-fetch-skips-hardening
-c main.c -o main.o -O1
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Experimental validation by simulation

▶ QEMU support for the scheme and for fetch skip injection

MiBench [Gut+01] benchmarks
1. Exhaustive skip
2. Exhaustive double-skip
3. Exhaustive skip-and-repeat
R. 2000 random multi-faults

Attack succeeded (0)
Attack detected (∼75%)
Segfault
Other crash

▶ 9 programs, 32’000 attacks reached, 0 bypass (0 checksum collision)
▶ Cost: ∼10% time, average x2.46 space (similar work: x5 time and space)

These are very good because of the software/hardware combo!
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Conclusion

Spooky low-level attack tackled by software/hardware co-op with formal analysis.

Novelties
▶ Protect against a microarch-level attack
▶ Semantic modeling and proof!

Insights and future work
▶ Crossing the abstraction gap: possible, but rigorously
▶ Deeper toolchain integration for security passes in compilers (based on [Vu21])

Thoughts?
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