
From low-level fault modeling
(of a pipeline attack)

to a proven hardening scheme

From low-level fault modeling
(of a pipeline attack)

to a proven hardening scheme
Sébastien MICHELLAND, Christophe DELEUZE, Laure GONNORD

(UGA/LCIS, Valence)

JAIF’24 – October 1st, 2024



Introduction Fetch skips The countermeasure Implementation Conclusion

1

Introduction

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 1/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 100%

Skip an IR instruction 85%

Skip a C statement 10%

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 2/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 100%

Skip an IR instruction 85%

Skip a C statement 10%

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 2/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 100%

Skip an IR instruction 85%

Skip a C statement 10%

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 2/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 100%

Skip an IR instruction 85%

Skip a C statement 10%

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 2/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Reversing abstraction descent is approximate
Coverage (fictional)

C source code
...

Many compiler IRs
...

ISA/Assembly Skip an instruction 30%?

Skip an IR instruction 25%?

Skip a C statement 3%?

Micro-architecture

Gates/RTL

Electrical signals

(software)

(hardware)

Glitch clock cycle

Fail to latch in time

Skip memory fetch

100%

85%?

50%?

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 2/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Morality: the cost of modeling at high-level

Approximating undermines security guarantees:
▶ Software protections for models at assembly level bypassed with micro-arch abuse.

[Yuc+16]

In a perfect world...

1. Stop fault models’ approximations at assembly level or lower
2. Make software generate secure code (tank complexity with semantics)

Reality check: need more theoretical foundations, and old tech (e.g. C) is not helping.

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 3/14



Introduction Fetch skips The countermeasure Implementation Conclusion

From low-level fault modeling (...) to a proven hardening scheme

Published: CC’24 [MDG24]
https://hal.science/hal-04438994

▶ Study a low-level fault model
▶ “Fetch skips”
▶ More accurate than instruction skips

▶ Design a proven countermeasure
▶ Aware of low-level behaviors NEW

▶ Coded in LLVM/ld, tested in QEMU

▶ Based on compiler/hardware collaboration

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 4/14

https://hal.science/hal-04438994


Introduction Fetch skips The countermeasure Implementation Conclusion

2

Fetch skips

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 4/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32S&R32
▼ ▼

g+16:

lw ra, 16(sp)

int g(int x) {
return f(x) + 1;

}

16-bit instructions
Aligned 32-bit instructions
Unaligned 32-bit instructions

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 5/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16(lw cont.) addi sp, sp, 16

c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:S32

S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Microarchitectural-level

▶ Skip 32 bits:
Skip a full row.

▶ Skip and repeat 32 bits:
Replace a row with predecessor.

Found by Alshaer et al. [Als+22]

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 5/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Annoying consequences:
▶ Skip one instruction
▶ Skip two instructions
▶ Corrupt parameters
▶ Craft a new instruction
▶ Craft multiple instructions (!)

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 5/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Annoying consequences:
▶ Skip one instruction
▶ Skip two instructions
▶ Corrupt parameters
▶ Craft a new instruction
▶ Craft multiple instructions (!)

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 5/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16

c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32

S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Annoying consequences:
▶ Skip one instruction
▶ Skip two instructions
▶ Corrupt parameters
▶ Craft a new instruction
▶ Craft multiple instructions (!)

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 5/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Annoying consequences:
▶ Skip one instruction
▶ Skip two instructions
▶ Corrupt parameters
▶ Craft a new instruction
▶ Craft multiple instructions (!)

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 5/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Mechanisms of a low-level fault model: fetch skips.

Aligned Unaligned

c.addi sp, sp, -16 c.sw ra, 12(sp)

c.addi sp, sp, -16 c.sw ra, 12(sp)

call f (call cont.)

call f (call cont.)

c.addi a0, a0, 1 lw ra, 12(sp)

c.addi a0, a0, 1 lw ra, 12(sp)

(lw cont.) addi sp, sp, 16

(lw cont.) addi sp, sp, 16c.addi a0, a0, 1 lw ra, 12(sp)

(addi cont.) c.ret

g:

S32

g+4:

S32

g+8:

S32

g+12:

S32S&R32
▼ ▼

g+16:

lw ra, 16(sp)

Annoying consequences:
▶ Skip one instruction
▶ Skip two instructions
▶ Corrupt parameters
▶ Craft a new instruction
▶ Craft multiple instructions (!)

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 5/14



Introduction Fetch skips The countermeasure Implementation Conclusion

What security property can we achieve here?

▶ We inherently can’t prevent the attack altogether.
▶ Ideally: recovery, clean detection
▶ Here: prevent attacker from exploiting corrupted states

Fetch skips hardening property

After a fetch skip, the program will stop/crash before the end of the current block.

How?
1. Hardware will compute a checksum of each executed block.
2. Software will compare with expected value.

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 6/14



Introduction Fetch skips The countermeasure Implementation Conclusion

What security property can we achieve here?

▶ We inherently can’t prevent the attack altogether.
▶ Ideally: recovery, clean detection
▶ Here: prevent attacker from exploiting corrupted states

Fetch skips hardening property

After a fetch skip, the program will stop/crash before the end of the current block.

How?
1. Hardware will compute a checksum of each executed block.
2. Software will compare with expected value.

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 6/14



Introduction Fetch skips The countermeasure Implementation Conclusion

3

The countermeasure

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 6/14



Introduction Fetch skips The countermeasure Implementation Conclusion

The countermeasure: software / hardware opcode checksums.

Original block, except jump

Original jump

c.addi sp, sp, -16 c.sw ra, 12(sp)

ccscall NEW (ccscall cont.)

0x354c 0xc606

call f (call cont.)

c.ebreak c.ebreak

c.ebreak c.ebreak

g:

g+4:

g+8:

g+12:

g+16:

g+24:

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 7/14



Introduction Fetch skips The countermeasure Implementation Conclusion

The countermeasure: software / hardware opcode checksums.

Original block, except jump

Original jump

Checksum test (needed to jump )
Sum of lines computed by linker.
Exception if mismatch at runtime.

Wall of trap instructions
Added by compiler.
Prevents escape from block.

c.addi sp, sp, -16 c.sw ra, 12(sp)

ccscall NEW (ccscall cont.)

0x354c 0xc606

call f (call cont.)

c.ebreak c.ebreak

c.ebreak c.ebreak

g:

g+4:

g+8:

g+12:

g+16:

g+24:

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 7/14



Introduction Fetch skips The countermeasure Implementation Conclusion

The countermeasure: software / hardware opcode checksums.

Binary encoding:

41 11 06 c6

+ 0b 24 00 00

= 4c 35 06 c6

c.addi sp, sp, -16 c.sw ra, 12(sp)

ccscall NEW (ccscall cont.)

0x354c 0xc606

call f (call cont.)

c.ebreak c.ebreak

c.ebreak c.ebreak

g:

g+4:

g+8:

g+12:

g+16:

g+24:

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 7/14



Introduction Fetch skips The countermeasure Implementation Conclusion

The countermeasure: software / hardware opcode checksums.

Intuition for security:

Hardware traps on jump
unless the previous instruction
was ccs/ccscall and it passed.

Too long to be jumped over (12 bytes)

c.addi sp, sp, -16 c.sw ra, 12(sp)

ccscall NEW (ccscall cont.)

0x354c 0xc606

call f (call cont.)

c.ebreak c.ebreak

c.ebreak c.ebreak

g:

g+4:

g+8:

g+12:

g+16:

g+24:

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 7/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Key design points

[Hardware] RISC-V ISA extension:
▶ Updates a checksum register for each instruction executed
▶ One instruction for checksum tests, required before a jump
▶ Hardware support reasonable

▶ Tiny extension for a modular architecture (RISC-V)
▶ No software-only option anyway

[Software] Compiler and linker:
▶ Provides checksum code and walls
▶ Linker computes checksums and shuts down two attacks by avoiding values that

decode as jumps or checksum instructions

NEW

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 8/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Key design points

[Hardware] RISC-V ISA extension:
▶ Updates a checksum register for each instruction executed
▶ One instruction for checksum tests, required before a jump
▶ Hardware support reasonable

▶ Tiny extension for a modular architecture (RISC-V)
▶ No software-only option anyway

[Software] Compiler and linker:
▶ Provides checksum code and walls
▶ Linker computes checksums and shuts down two attacks by avoiding values that

decode as jumps or checksum instructions NEW

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 8/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Formal semantics and proof of security

▶ To reason about the attack, extend the semantics of assembler! NEW

▶ Describe how fetches work to clear the abstraction gap

▶ Fetch rules (right): describe fetches + attacks
▶ Step rules (not shown): decoding/execution

Proven security guarantee

If you fetch skip, the program will stop/crash before
the end of the current block.
Same for multi-fault attacks (unless checksum
collision–usually impossible).

NOFAULT

(PC, ρ) a ⇒ [a] (PC, [a])

S32(k) 1 < k ≤ N

(PC, ρ) a ⇒ [a+ 4k] (PC + 4k, [a+ 4k])

S&R32 ρ ̸= [a]

(PC, ρ) a ⇒ ρ (PC, [a])

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 9/14



Introduction Fetch skips The countermeasure Implementation Conclusion

4

Implementation

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 9/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Implementation: a multi-stage process

clang

C source code

LLVM

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime
GNU ld

Executable code

MachineFunctionPass: ccs/trap emission + alignment

Static relaxation: code size bounded
Emitter: Late jump expansion + relocation emission

Relocation: Checksum computation and adjustment

clang --target=riscv32 -march=rv32gc -mabi=ilp32d
-mcpu=generic-rv32-fsh
-mllvm --riscv-enable-fetch-skips-hardening
-c main.c -o main.o -O1

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 10/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Experimental validation by simulation

▶ QEMU support for the scheme and for fetch skip injection

MiBench [Gut+01] benchmarks
1. Exhaustive skip
2. Exhaustive double-skip
3. Exhaustive skip-and-repeat
R. 2000 random multi-faults

Attack succeeded (0)
Attack detected (∼75%)
Segfault
Other crash

▶ 9 programs, 32’000 attacks reached, 0 bypass (0 checksum collision)
▶ Cost: ∼10% time, average x2.46 space (similar work: x5 time and space)

These are very good because of the software/hardware combo!
JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 11/14



Introduction Fetch skips The countermeasure Implementation Conclusion

5

Conclusion

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 11/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Conclusion

Spooky low-level attack tackled by software/hardware co-op with formal analysis.

Novelties
▶ Protect against a microarch-level attack
▶ Semantic modeling and proof!

Insights and future work
▶ Crossing the abstraction gap: possible, but rigorously
▶ Deeper toolchain integration for security passes in compilers (based on [Vu21])

Thoughts?

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 12/14



Introduction Fetch skips The countermeasure Implementation Conclusion

Conclusion

Spooky low-level attack tackled by software/hardware co-op with formal analysis.

Novelties
▶ Protect against a microarch-level attack
▶ Semantic modeling and proof!

Insights and future work
▶ Crossing the abstraction gap: possible, but rigorously
▶ Deeper toolchain integration for security passes in compilers (based on [Vu21])

Thoughts?

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 12/14



References

References I

[Als+22] Ihab Alshaer et al. “Variable-Length Instruction Set: Feature or Bug?” In: Maspalomas,
Spain. IEEE, 2022. ISBN: 978-1-6654-7405-4. DOI: 10.1109/DSD57027.2022.00068.

[Gut+01] M.R. Guthaus et al. “MiBench: A free, commercially representative embedded benchmark
suite”. In: Austin, TX, USA. Austin, TX, USA: IEEE, 2001, pp. 3–14. ISBN: 0-7803-7315-4.
DOI: 10.1109/WWC.2001.990739.

[MDG24] Sébastien Michelland, Christophe Deleuze, and Laure Gonnord. “From Low-Level Fault
Modeling (of a Pipeline Attack) to a Proven Hardening Scheme”. In: Proceedings of the
33rd ACM SIGPLAN International Conference on Compiler Construction. CC 2024. ,
Edinburgh, United Kingdom, Association for Computing Machinery, 2024, pp. 174–185.
ISBN: 9798400705076. DOI: 10.1145/3640537.3641570. URL:
https://doi.org/10.1145/3640537.3641570.

[Vu21] Son Tuan Vu. “Optimizing Property-Preserving Compilation”. 2021SORUS435. PhD thesis.
2021. URL: http://www.theses.fr/2021SORUS435/document.

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 13/14

https://doi.org/10.1109/DSD57027.2022.00068
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1145/3640537.3641570
https://doi.org/10.1145/3640537.3641570
http://www.theses.fr/2021SORUS435/document


References

References II

[Yuc+16] Bilgiday Yuce et al. “Software Fault Resistance is Futile: Effective Single-Glitch Attacks”. In:
Santa Barbara, CA, USA. Santa Barbara, CA, USA: IEEE, 2016, pp. 47–58. ISBN:
978-1-5090-1109-4. DOI: 10.1109/FDTC.2016.21.

JAIF’24 (Rennes, 2024-10-01) From low-level fault modeling (of a pipeline attack) to a proven hardening scheme 14/14

https://doi.org/10.1109/FDTC.2016.21

	Introduction
	Fetch skips
	The countermeasure
	Implementation
	Conclusion
	Appendix
	References


