- "2 SHIELD

Attaques par fautes sur SLH-DSA
Thomas Prest & Adrian Thillard
POShield (Paris, FR)

JAIF 2024

Post Quantum Cryptography - "*SHIELD

Quantum computers vs cryptography

c Vs classical Vs quantum
Primitive
computers computers
Symmetric AES Very hard
crypto SHA Very hard
BN b e o ._"i[;
Asymmetric RSA Very hard Easy M oo } %"’-""W%‘ /
0= e |)

crypto ECC Very hard Easy i

Post-quantum cryptography aims to replace RSA/ECC:

e |Lattices

e Codes

® [sogenies

e Multivariate
o

Confidential - Copyright PQShield Ltd - All Rights Reserved 2

. . NIST standardisation ' haSHIELD

Dec. July July Aug.

2016 201 7 201 9 2020 2022 2024
NN
/.~ 4

NIST Call for Round 1 Round 2 Round 3 Standards Standards
proposals 69 candidates 26 candidates 15 candidates announced published
- ML-KEM - FIPS 203
- ML-DSA - FIPS 204
- SLH-DSA - FIPS 205

- FN-DSA

Confidential - Copyright PQShield Ltd - All Rights Reserved

The simplest hash-based signhature - F*SHIELD

Main idea is to use hash chains

sk pk
s1 — H(s1) — H2(s1) — . — HN-1(s1) — HN(s1) = p1
s2 | > H(s2) — H%(s2) — w — HVY(s2) — [HY(s2)=p2
Signing key: sk = (s1, s2) two 256-bit values
Verification key: pk = (p1, p2)
Signature of m: sig = (sigl, sig2) = (H™M(s1), HN™(s2))
Verification: Check that (HN™(sig1), H™(sig2)) = (p1, p2)

Observation 1: pkis a convoluted hash commitment of sk, sig partially opens this commitment

Observation 2: From any valid signature, we can recover the public key

This is a one-time signature (OTS). Asking two or more signatures breaks the scheme

Confidential - Copyright PQShield Ltd - All Rights Reserved

Attacks on the simplest hash-based sighature :‘.gHELD

sk pk
s1 | — | H(s1) — H3(s1) — w = HYYsD) | — [HY(s1) =p1
s2 | —» | H(s2) — H3%(s2) - w = |HVY(s2)| — [HM(s2)=p2

Black box attack (two signatures):

1. Ask two signatures (for < msgl)
2. We can forge a signature for any <msg < msgl

Fault injection attack (random fault):

1. Ask fora signature of msgl = N and fault the counter msg1 (—) when computing H™*€!(s2)
2. We can forge a signature for any message <msg<msgl =N

Confidential - Copyright PQShield Ltd - All Rights Reserved 5

. . Merkle trees: from one-time to few-time : *°SHIELD

4 N

R1 = H(OTS, 0TS2) R2 = H(OTS3, 0TS4)

C X X Y)

Merkle trees: allows to sign N times using N OTS
e Signature:1signature = {10TS signature } + { log N hashes (= the co-path of the OTS used) }
e Limitation:
o Generating pk = R costs O(N) hashes, so N cannot be too large
o Requires a stateful counter — bad for deployment, bad against FIAl

Confidential - Copyright PQShield Ltd - All Rights Reserved 6

. . Goldreich trees: stateless few-time signatures

Goldreich trees:
e Principle:
o N Merkle trees, each of depth 1
o Each OTS signs the root of the
Merkle tree below it
e Signature:1signature = {log N hashes } +
{log N OTS signatures }
e Advantages:
o Generating pk = R2 takes time 0(1),
so scales for arbitrarily large N
o Can be made stateless when n —
e Fault attacks?
o Faultthe OTS
o Fault the Merkle tree recomputation

- "2 SHIELD

R3 = H(OTS5, 0TS6)

Confidential - Copyright PQShield Ltd - All Rights Reserved

SPHINCS+: Merkle + Goldreich + optimizations ::*SHIELD

CE—

G S—
** **

%ﬁ&&&&%&

SPHINCS+: a huge Goldreich “hyper-tree”, with each Merkle tree having many levels
1. The specific OTS used in SPHINCS+ is WOTS+
2. The bottom-most OTS are actually few-time signatures (specifically FORS)
3. 3 security levels (128/192/256), 2 variants (short/fast). Stateless.

Confidential - Copyright PQShield Ltd - All Rights Reserved 8

Fault injection on SPHINCS+ (Castelnovi et al, 2018) ::reSHIELD

Main idea: make a top-level OTS sign 2 = values
1. Ask two signatures of msg
o SPHINCS+is deterministic — the
“signing path” is always the same
First signature: no fault
3. Second signature: fault the computation
of the second-level Merkle tree
4. The same OTS signs two = values — we
break the unforgeability of this OTS ’

o

How to exploit this: Tree grafting #

1. Generate a partial signature (up to
second-level Merkle tree M) for any msg*
Sign M using the faulted OTS
3. We now have a forged signature

o T o mm o e -

o

Confidential - Copyright PQShield Ltd - All Rights Reserved

Fault injection on SPHINCS+ (Castelnovi et al, 2018) ::reSHIELD

Main idea: make a top-level OTS sign 2 = values
1. Ask two signatures of msg
o SPHINCS+is deterministic — the
“signing path” is always the same
First signature: no fault
3. Second signature: fault the computation
of the second-level Merkle tree
4. The same OTS signs two = values — we

o

break the unforgeability of this OTS ’
I
|
Bonus: :
e One fault I
e Low required precision |
e Faulted signatures are valid l
\

Confidential - Copyright PQShield Ltd - All Rights Reserved

- "2 SHIELD

Countermeasures

Aim at preventing triggering twice the same WOTS+ instance on different messages

Pb: SLH-DSA is STATELESS, so we need to add some shenanigans in memory to ensure that

ldea (Genét 2023):

Shortcoming: there are a LOT of them, we need to make some choice

Confidential - Copyright PQShield Ltd - All Rights Reserved n

L. - "2 SHIELD

Caching layers (Genét CHES 2023)
Inspired by Gravity-SPHINCS: -

[static] cache all WOTS+ in the top layers
Define the nb c of layers that can be cached

depending on available memory - / \ <

Confidential - Copyright PQShield Ltd - All Rights Reserved 12

o . . "“SHIELD

Caching layers (Genét CHES 2023)
Table 9: Analysis of the layer caching countermeasure for all SPHINCS* parameter sets. -

P(Expl.)
c= 1 2 3 4 ... d-1 d
128s 0.8972 0.8591 0.8179 0.7733 ... 0.6141 0.0000
128f 0.9505 0.9335 0.9158 0.8975 ... 0.5076 0.0000
192s 0.9287 0.9034 0.8767 0.8486 ... 0.7539 0.0000
192f 0.9420 0.9218 0.9007 0.8787 ... 0.2625 0.0000

2565 0.8711 0.8216 0.7670 0.7066 ... 0.4784 0.0000 - / 3 S

256f 0.9327 0.9090 0.8840 0.8578 ... 0.3864 0.0000 V- SA
Table 10: Analysis of the layer caching countermeasure for all SPHINCS™ parameter sets.
Memory (bytes)
c= 1 2 3 4 e d

128s 143 x 10° 3.68 x 107 9.43 x 10° 2.41x10'% ... 1.04x10%2
128f 448 x 10° 4.03 x 10* 3.27 x 10° 2.62x 10° ... 7.38x10% ‘b b b ‘
192s 3.13x10° 8.05x 107 2.06x10" 5.28x10" ... 2.27x10*)
\ V' VvV v v VvV vV VV VY

: . 1 1
192f 9.79 x 10° 8.81x 10* 7.15x10° 573 x 10° ... 1.03x 1078 vV V
2565 549 x 10° 1.41x 10% 3.61x10'0 9.24x10'2 ... 3.97x10?
2561 343 x10* 5.83x 10° 9.36 x 106 1.50 x 108 ... 6.75x10%

Confidential - Copyright PQShield Ltd - All Rights Reserved 13

L. - " SHIELD

Caching branches (Genét CHES 2023)
[Dynamic] cache all WOTS+ operations -

occurring during computation & &

Confidential - Copyright PQShield Ltd - All Rights Reserved

L. - " SHIELD

Caching branches (Genét CHES 2023)
[Dynamic] cache all WOTS+ operations -

occurring during computation & &

Confidential - Copyright PQShield Ltd - All Rights Reserved

Caching branches (Genét CHES 2023)

Table 11: Analysis of the branch caching countermeasure for all SPHINCS* parameter
sets. The numbers b are rounded up to the next integer.

Table 13: Analysis of the branch caching countermeasure for all SPHINCS™ parameter

P(Expl.)
b= (2/3)2" (2/3)22" (2/3)23%" (2/3)2%" ... (2/3)2%
1285 0.9292 0.9238 0.9174 0.9098 0.3172
128f 0.9647 0.9634 0.9620 0.9605 0.3219
192s 0.9511 0.9485 0.9457 0.9425 0.3249
192f 0.9585 0.9568 0.9549 0.9528 0.3052
2565 0.9111 0.9023 0.8917 0.8785 0.3068
256f 0.9530 0.9507 0.9481 0.9453 0.3130

sets. The numbers b are rounded up to the next integer.

Memory (bytes)

b= (2/3)2% (2/3)22" (2/3)2%" (2/3)2% (2/3)2%"
128s 8.14 x 10° 1.82 x 10% 4.00 x 10*° 8.53 x 10'? 7.36 x 102
128f 7.14 x 10* 4.91 x 10° 3.71 x 10 2.80 x 107 5.55 x 10%°
192s 1.74 x 105 3.90 x 108 8.56 x 10'° 1.83 x 10'3 1.58 x 10?2
192f 1.68 x 10° 1.16 x 10 8.81 x 10 6.69 x 107 7.62 x 1022
2565 3.02 x 106 6.77 x 10 1.49 x 101! 3.17 x 103 2.74 x 1022
256f 413 x10° 6.08 x 10° 9.12 x 107 1.36 x 10° 4.79 x 1023

o o o

. "eSHIELD

Confidential - Copyright PQShield Ltd - All Rights Reserved

- "2 SHIELD

Caching strategies are too costly

“Since the threat of a fault can , the current best solution to protect the
signature scheme against accidental and intentional faults is through ; an observation thatis
shared by others”

“In conclusion, the results of this paper urge all real-world deployments of SPHINCS+ to come with
checks, even if the use case is not prone to faults”

Confidential - Copyright PQShield Ltd - All Rights Reserved 17

- "2 SHIELD

Best countermeasure yet: redundancy

M—

M—

Algorithm

Algorithm

Algorithm

Algorithm

(provided secure checks,
- Sl sanitized inputs,
constants..)

G Si=S=S= =5
— S'r Secure up to r-1faults.

Confidential - Copyright PQShield Ltd - All Rights Reserved

- "2 SHIELD

Attacker model

: they can recognize patterns on operations, but not their operands
=> can distinguish the operations based on the nb of input words

F H PRF Ten
Key Generation oh/dy1en ok/d _ 1 2h/d1 en oh/d
Signing kt +d(2"4)wlen k(t—1)+d@2"4-1) kt+d(@2"?)1en d2M4
Verification k + dwlen klogt+ h - d

Confidential - Copyright PQShield Ltd - All Rights Reserved 19

- "2 SHIELD

Attacker model

: they can recognize patterns on operations, but not their operands
=> can distinguish the operations based on the nb of input words

: the attacker needs to perturbate the SLH-DSA execution
=> must inject twice the same fault (consider no collision)

Confidential - Copyright PQShield Ltd - All Rights Reserved 20

- "2 SHIELD

Redundancy + randomization

M—

M—

Randomized

Algorithm

Randomized

Algorithm

Randomized

Algorithm

Randomized

Algorithm

(provided secure checks,
sanitized inputs,
constants,)

SR

—— 52\

g (S=8=8= =)

Secure up to r-1faults.
AND

. S,

secure to > r-1 faults.

Confidential - Copyright PQShield Ltd - All Rights Reserved

21

- "2 SHIELD

Randomization

Execute operations in a random order (eg., 16 sboxes in AES => 16! possible orders).

In SLH-DSA, many operations can be performed in parallel:
- at every level of the FORS (leaves)

I

I o

Confidential - Copyright PQShield Ltd - All Rights Reserved 22

L. - " SHIELD

Randomization

Execute operations in a random order (eg., 16 sboxes in AES => 16! possible orders).

In SLH-DSA, many operations can be performed in parallel:

- at every level of the FORS (leaves)
- at every level of the hypertree

fuindads

Confidential - Copyright PQShield Ltd - All Rights Reserved 23

- "2 SHIELD

Randomization

Execute operations in a random order (eg., 16 sboxes in AES => 16! possible orders).

In SLH-DSA, many operations can be performed in parallel:
- at every level of the FORS (leaves)

- at every level of the hypertree sk pk
- at every step of a WOTS chain sl [= Hellh = ek 2 - = 6 2 [Fsh=p
s2 [- H(s2) - H%(s2) e - HY(s2) - [HY%(s2)=p2

Confidential - Copyright PQShield Ltd - All Rights Reserved 24

L. - " SHIELD

Randomization

Execute operations in a random order (eg., 16 sboxes in AES => 16! possible orders).

In SLH-DSA, many operations can be performed in parallel: -
- at every level of the FORS (leaves)

- at every level of the hypertree
- at every step of a WOTS chain
- (possible optimizations) Pl ¥ X >

ﬁ (XY Irry
VvV VVYVVVVY

Confidential - Copyright PQShield Ltd - All Rights Reserved 25

- "2 SHIELD

Randomization

Execute operations in a random order (eg,,).

In SLH-DSA, many operations can be performed in parallel:

- at every level of the hypertree
- at every step of a WOTS chain
- (possible optimizations)

I

I o

for SLH-DSA-128s.

Confidential - Copyright PQShield Ltd - All Rights Reserved 26

L. - " SHIELD

Decaying entropy

Climbing in each subtree lowers the number of
possible orders, up to the root, where no

randomness can occur. ’
Depending on the constraints:

- add dummy operations

artificially raise entropy and
decreases success probability

- locally duplicate the operation ’/5(757 ‘&‘
perfect security but need to be

carefully made (eg duplicate inputs)

VVYVYVVVYVYVYVVVYV VYV VYV

Confidential - Copyright PQShield Ltd - All Rights Reserved 27

Security (no dummies): proba of success

- "2 SHIELD

128s
PRF
F-FORS
F-i

Tlen
HO
Hmax

r=1
1.00e+00
1.00e+00
1.00e+00
8.57e-01
9.52e-01
1.00e+00

r=2
5.47e-06
1.74e-05
7.97e-06
2.39e-04
4.54e-02
6.98e-05

r=3
2.99e-11
3.04e-10
6.36e-11
6.67e-08
2.16e-03
4.87e-09

r=4
1.64e-16
5.30e-15
5.07e-16
1.86e-11
1.03e-04
3.39e-13

=5
8.96e-22
9.25e-20
4.04e-21
5.19¢e-15
4.90e-06
2.37e-17

Confidential - Copyright PQShield Ltd - All Rights Reserved

28

- "2 SHIELD

Asymptotic security (dummies on most sensitive pool)

1071 -

10—3 4

10—5 -

10—7 -

10—9 -

attack success probability

10-11 4

10—13 4

1015 4

0 200 400 600 800 1000 1200 1400
kilobytes overhead

Confidential - Copyright PQShield Ltd - All Rights Reserved 29

- "2 SHIELD

Quick PoC

Ran simulations on open source “sloth” implementation (), slightly
modified to get:

- compiled in -00, r executions and final comparison

-compiled in -00, r executions and final comparison w randomization of F leaves

Implementation allows for easy and immediate randomization of 14*12 operations (modifying a bit more
would allow for much better, but time constraints..)

to stuck at O the same register at the exact same time:
- redundancy => 100% success rate
- redundancy + randomization:
-r=2 => 55 successes on 10k (p=0.0055, expected 0.0059)
-r=3 => 2 successes on 200k (p=0.00001, expected 0.0000354)

Confidential - Copyright PQShield Ltd - All Rights Reserved 30

https://github.com/slh-dsa/sloth

- "2 SHIELD

Conclusion

are coming into embedded devices and they

is particularly vulnerable and it is not easy to protect.

For , we may leverage SLH-DSA structure to gain to get “probable” security.

Confidential - Copyright PQShield Ltd - All Rights Reserved 31

