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State of the Art & Motivations

CPU’s Abstraction Levels during Fis

int main (password) {

Source-code level

if check(password)
authenticate(); e
else error(); Fault Exploitation
}
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State of the Art & Motivations

Experimental Characterization

Post-Silicon (often a black box)
Apply physical stress

Observe the consequences on software
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State of the Art & Motivations

Experimental Characterization
* Post-Silicon (often a black box)

* Apply physical stress

* Observe the consequences on software

Instr Instr Write

Need to Open the Box I e ety prefetch
« Unexplainable observed effects [PH19 - 59 [ Reg) |- [AL]|>|SU]f . |g 8 % Faulty branch-pred.
p [ ] |pArchltecture level | Eé Z |[Buffer] fie ||| —— | = g§ Faulty forwarding

« Importance of microarchitectural mechanisms
« Pipelining [BG11, YG15]
« Prefetch Buffer [TA22]
« Forwarding [LB18, LB19]
«  Memory Cache [TB21]

Important to
consider

< Hardware Layer |  [Software La):/e>
A

» Pre-silicon analyses should now consider processor microarchitecture
> Security evaluations require exhaustive methods

[BG11] Balasch et al. "An in-depth and black-box characterization of the effects of clock glitches on 8-bit MCUs." FDTC 2011.
[YG15] Yuce and Schaumont. "Improving fault attacks on embedded software using RISC pipeline characterization." FDTC 2015.
[PH19] Proy et al. "A first ISA-level characterization of EM pulse effects on superscalar microarchitectures: a secure software perspective." ARES 2019.
[LB18] Laurent et al. "On the importance of analysing microarchitecture for accurate software fault models." DSD 2018.
@ [LB19] Laurent et al. "Fault injection on hidden registers in a risc-v rocket processor and software countermeasures." DATE 2019. 4
[TB21] Trouchkine et al. "Electromagnetic fault injection against a complex CPU, toward new micro-architectural fault models." Journal of Cryptographic Engineering 2021.
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= Formal Methods: Reason on a system model to prove properties




Related Works () simutation

.
o
3
o
=
(0)
=
(@)
o
()]

%)
SW |2
>
Q@
I =1 SR PP Y
O|F
O || AutoFaut
S| e || verr1 || FIVER FIRMER
HW = [ ] [AW20] [RR21] [TG24]
2 SYNFI
< [NO22]
\

Pre-Silicon Evaluation: Simulation vs Formal Methods
= Simulation: Execute concrete instances of the system
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Hardware Methods
= Dedicated to evaluate crypto circuits
= Compare fault-free vs. faulted circuits
= Performance (FIVER on AES):
= 1 fault in 22 sec.
= 2 faults in 130 hours
@ » Cannot model program execution 5
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Pre-Silicon Evaluation: Simulation vs Formal Methods
= Simulation: Execute concrete instances of the system
= Formal Methods: Reason on a system model to prove properties

Hardware Methods Software Methods

= Dedicated to evaluate crypto circuits = |SA fault models, e.g., inst. skip

= Compare fault-free vs. faulted circuits = Performance (BINSEC):

= Performance (FIVER on AES): = Bootloader: 1 faultin 9 sec.
= 1 fault in 22 sec. =  PIN comp.: 10 faults < 1 sec.
= 2 faults in 130 hours » Ignore the underlying processor

@ » Cannot model program execution implementation 5
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Pre-Silicon Evaluation: Simulation vs Formal Methods
= Simulation: Execute concrete instances of the system
= Formal Methods: Reason on a system model to prove properties
Hardware Methods Software Methods Combined Methods
= Dedicated to evaluate crypto circuits = |SA fault models, e.g., inst. skip = Originally for safety analysis with simulation
= Compare fault-free vs. faulted circuits = Performance (BINSEC): = |dentify complex interplay between HW and SW
= Performance (FIVER on AES): = Bootloader: 1 faultin 9 sec. » Scalability issues (uArchiFl in 14 hours)
= 1 fault in 22 sec. =  PIN comp.: 10 faults < 1 sec. * 100 instructions
= 2 faultsin 130 hours » Ignore the underlying processor * Small in-order CPU (46 kGE)

@ > Cannot model program execution implementation - 1 fault injection 5



Problem Statement and Contributions

Observation
» HW- or SW-only evaluations are insufficient

Need
> Pre-silicon combined HW/SW analyses
> Exhaustive techniques, e.g., formal methods => Security guarantees
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» Addressing scalability is essential for practical applicability




Problem Statement and Contributions

Observation
» HW- or SW-only evaluations are insufficient

Need
> Pre-silicon combined HW/SW analyses
> Exhaustive techniques, e.g., formal methods => Security guarantees

Challenge: State space explosion problem
« Exploring the entire state space = Scalability issues
» Addressing scalability is essential for practical applicability

Contributions
» Decompose HW/SW co-verification = Contain the state space explosion
» Address previously intractable use cases with our new methodology
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Methodology Overview

Principle
Hardware
«  Security-critical systems implement HW protections Design

- Preliminary evaluation of the hardware security

- Must be run only once Fault }
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- Faults not detected by HW must be detected by SW
Attack [ I\
Order | k
i Attacker_(le
Requirements Goal
> Need formal HW security guarantees to remove
ineffective faults during SW co-verification Binary =
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« Existing HW Techniques
- Compare fault-free trace (golden) vs. faulty trac
«  Only provide bounded guarantees — Insufficient

—>» vcd

\\ Verification

logs

Verification result

I

- |
: Fault-Resistant |
| S ani I
> Partitioning |
I

Reduced

Step 1 — HW Verification | | Fault Model

» Robust Vulnerable

i System Model Verificgtion result
ISV ) 2 | | Robust / Vulnerable
| System | | System >
3| Modeling | | Verification B D
L ....... J G _ \ Counter

Step 2 — System Verification

- Faults can have long-term effects: e.g., hidden in microarchitectural registers

> Need unbounded guarantees

ved I example



Step 1 — HW Verification

Concurrent Error Detection Scheme

= Spatial redundancy, e.g.,
Duplication
Triplication

= |Informational redundancy e.g.,
Error detection codes

> Raise an alert on a mismatch (with a potential delay d)

input

Target T'

Prediction P

d
output <---

Checker C

L > alert

10



Step 1 — HW Verification

i At most k faults

Concurrent Error Detection Scheme
= Spatial redundancy, e.g., input incorrect delay

Duplication Target T output ("'d""):

Triplication :

1
= Informational redundancy e.g.,
,.; . Checker C > alert
- Error detection codes Prediction P q

> Raise an alert on a mismatch (with a potential delay d)

Definition (k-Fault Security)

Assumptions
» At most k faults are injected in the circuit

Guarantees
« Circuit’s outputs are correct, or an alert is raised after at most d clock cycles

10



Fault-Resistant Partitioning

Contribution

Build and prove a fault-resistant partitioning of registers

Definition (k-Fault-Resistant Partitioning)

Assumptions

Maximum budget of k faults, i.e., k; + k, < k

At most k, faults in partitions at clock cycle j

At most k, faults in logic gates at clock cycles [, j + d ]
No alert between cycles jand j + d

Guarantees

At most k, + k, faulty partitions at clock cycle j + 1
No corrupted outputs at clock cycle j

Example with k=17

o 08

Br\oy

11



Fault-Resistant Partitioning

Contribution Example with k=7

Build and prove a fault-resistant partitioning of registers w.l w.Q CB.3

Definition (k-Fault-Resistant Partitioning)

Assumptions
» Maximum budget of k faults, i.e., k; + k, < k
* At most k, faults in partitions at clock cycle j

At most
k, faults

11



Fault-Resistant Partitioning

Contribution Example with k=7

Build and prove a fault-resistant partitioning of registers L1 L2 L3
® ® ® At most
k, faults

Definition (k-Fault-Resistant Partitioning)

Assumptions

» Maximum budget of k faults, i.e., k; + k, < k

* At most k, faults in partitions at clock cycle j

* At most k, faults in logic gates at clock cycles [, j + d ]

At most
k, faults

11




Fault-Resistant Partitioning
Example with k=17

Contribution
Build and prove a fault-resistant partitioning of registers L1 L L
u p P g9 g .1 02 03 At most
. egs k, faults
Definition (k-Fault-Resistant Partitioning) — 2 At

Assumptions

» Maximum budget of k faults, i.e., k; + k, < k

* At most k, faults in partitions at clock cycle j

* At most k, faults in logic gates at clock cycles [, j + d ]
* No alert between cycles jandj + d k, faults

At most

11




Fault-Resistant Partitioning

Example with k=17

Contribution

Build and prove a fault-resistant partitioning of registers

Definition (k-Fault-Resistant Partitioning)

Assumptions

Maximum budget of k faults, i.e., k; + k, < k

At most k, faults in partitions at clock cycle j

At most k, faults in logic gates at clock cycles [, j + d ]
No alert between cycles jand j + d

Guarantees

At most k, + k, faulty partitions at clock cycle j + 1
No corrupted outputs at clock cycle j

o Q2

9{3

At most k,+ k,

faulty partitions

valid output { ?;1

11



Fault-Resistant Partitioning

Contribution Example with k=7

Build and prove a fault-resistant partitioning of registers w.l 322 37.3

Definition (k-Fault-Resistant Partitioning)

Assumptions
» Maximum budget of k faults, i.e., k; + k, < k

At most k,+ k,

* At most k, faults in partitions at clock cycle j faulty partitions

* At most k, faults in logic gates at clock cycles [, j + d ]

* No alert between cycles jandj + d

Guarantees ==

+ At most k, + k, faulty partitions at clock cycle j + 1 @

* No corrupted outputs at clock cycle j valid output { ?;1 CLlB’T‘t =0

Intuition

> Faulty values are confined in partitions and cannot alter the
circuit behavior without being detected by countermeasures.



Fault-Resistant Partitioning

Contribution Example with k=7

- Build and prove a fault-resistant partitioning of registers w.l 322 37.3

Definition (k-Fault-Resistant Partitioning)

Assumptions

»  Maximum budget of k faults, i.e., k; + k, < k At most kst k; —
* At most k, faults in partitions at clock cycle j faulty partitions

* At most k, faults in logic gates at clock cycles [, j + d ]

* No alert between cycles jandj + d

Guarantees @
+ At most k, + k, faulty partitions at clock cycle j + 1
* No corrupted outputs at clock cycle j valid output { ?;1 CLlB’T‘t =0
Intuition Advantages
> Faulty values are confined in partitions and cannot alter the - No need to unroll the circuit — fault propagation is abstracted

circuit behavior without being detected by countermeasures. - Provide unbounded guarantees

Limitations

k-fault resistant partitioning = k-fault security - Over-approximation of k-fault security
< Some circuits are k-fault secure, but we cannot prove it

@ > Formal definitions and proofs are in the paper
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Validation on Impeccable Circuits

Why Impeccable Circuits?
«  No similar work exists on CPUs for comparison
- Validate the first step of our methodology

« Against prior work like FIVER [RR21] «  Evaluate verification performance .

Impeccable Circuits [AM19]

«  Symmetric Bloc Ciphers (AES, LED, Simon, Skinny ...) protected with Error Detection Codes (EDC).
«  Designed to detect up to 3 faults (up to 7 faults for AES).

« An error signal is raised on fault detection and circuit outputs are zeroed out.

[AM19] Aghaie, Anita, et al. "Impeccable circuits." IEEE Transactions on Computers 2019.
[RR21] Richter-Brockmann, Jan, et al. "Fiver—robust verification of countermeasures against fault injections”. CHES 2021.

With multiple-fault attacks

13



Validation on Impeccable Circuits

Why Impeccable Circuits?
«  No similar work exists on CPUs for comparison
- Validate the first step of our methodology

« Against prior work like FIVER [RR21] «  Evaluate verification performance «  With multiple-fault attacks

Impeccable Circuits [AM19]

«  Symmetric Bloc Ciphers (AES, LED, Simon, Skinny ...) protected with Error Detection Codes (EDC).
«  Designed to detect up to 3 faults (up to 7 faults for AES).

« An error signal is raised on fault detection and circuit outputs are zeroed out.

Experimental Results

«  With 2 faults, we prove security of:
- Skinny in 10 sec. « AES in 4 hours — FIVER took 130 hours

«  With 3 faults (assuming no faults in the checker), we prove security of:
- Skinny in 40 sec. - AES in 55 hours — never been done before

[AM19] Aghaie, Anita, et al. "Impeccable circuits." IEEE Transactions on Computers 2019.
[RR21] Richter-Brockmann, Jan, et al. "Fiver—robust verification of countermeasures against fault injections”. CHES 2021.

13
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OpenTitan’s Processor: Secure lbex

. _ Secure Element OpenTitan [JR18]
, Register File E
Main Core J ® L
p— 3 °og
alalalalals g =k opentitan
3L ID EX Outputs > >
% Inputs 5 g
E EDC-Checker g
> iCache ©
g , S
g > Alerts Secure-lbex (development version) [Lo18]
IS5 Shadow Core | | — « RISC-V processor, 3 stages, in-order
5 delay EDC-Checker E | S Alalall e C tE Detecti h
Bl || <% - e oncurrent Error Detection schemes, e.g.,
> R IF D | EX [ — « Dual Core Lockstep (DCLS) with delay d
> | A o Y ‘ . . . . :
input buffer ED%ggﬁgkerl - . —»[ Lockstep J—Alert Error Detection Codes in Register File
R Dual-Core Lockstep Alerts
Fault Model
- Attacker with physical access to the processor
Figure - Secure Ibex Block Diagram - Single transient bit-flip everywhere at any time

[JR18] Johnson, Scott, et al. "Titan: enabling a transparent silicon root of trust for cloud." Hot Chips: A Symposium on High Performance Chips. Vol. 194. 2018.
[Lo18] lowRISC. Ibex RISC-V Core github repository. https://github.com/lowRISC/ibex. Accessed: February 22, 2024. 15



HW Evaluation: Results

Register File i
Main Core : 5‘0\)6‘ g Exploitable
EDC-Checker “30
Register File :‘oqe : AT AT ATATATA
! :
J P d IF . D | EX Outputs
E Inputs ;
= EDC-Checker
> iCache
Qo
5 % Alerts
E e
S ! Shadow Core E / [
3] ;
oY > o
2 P ST T Register File Jé‘\ E | output buffer
Y d H : |
8 > FPYT D Ex || | —
TLALA : ' Lockstep | > Alert
| input buffer EDC-Checker — Checker » Aler
' iCache 1A
| |
o« S )
Dual-Core Lockstep g Alerts

r , , "
| : Register File partitions

Main Core partition

-
| : Shadow Core partition

T iy
., Other partitions

\4

Data Memory Interface

Fault-Resistant Partitioning Results

. Ibex modules

o Prove 1-fault security of DCLS in 26 hours
o ldentify 172 exploitable locations in Reg. File in 1 min 30

o Prove 3-seq.-fault security of Reg. File in 12 mins

. Full Secure Ibex

o Prove 1-fault security in 42 hours ( + 26 h)
(assuming no faults in the 172 exploitable locations identified)

16



System Co-Verif: SW Case Studies + Results

First Stage of Secure Boot

«  Provided by the OpenTitan project

« Check authenticity and integrity of the
next boot stage

« Implement software protections e.g.,
- Step counters
« Test duplications

« Goal: Bypass memory signature check
- #instructions: 2 526

« #faults: 122 048

« Performance: 2.5 hours (8 threads)

+ Results: Secure

[DP16] Dureuil, Louis, et al. "FISSC: A fault injection and simulation secure collection." SAFECOMP 2016.
[Ko19] kokke. Tiny AES, release 1.0. https://github.com/kokke/tiny-AES-c, 2019. Accessed: February 22, 2024. 17
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System Co-Verif: SW Case Studies + Results

First Stage of Secure Boot

«  Provided by the OpenTitan project

« Check authenticity and integrity of the
next boot stage

« Implement software protections e.g.,
- Step counters
« Test duplications

« Goal: Bypass memory signature check
- #instructions: 2 526

« #faults: 122 048

« Performance: 2.5 hours (8 threads)

+ Results: Secure

VerifyPIN [DP16]

Not provided by the OpenTitan project

Compare two PINs for authentication
8 versions with various mix of protections

Goal1: Bypass authentication

Goal2: Increase max number of tries
# instructions: 187

# faults: 7 424

Performance: 6 mins (1 thread)
Results: Insecure

[DP16] Dureuil, Louis, et al. "FISSC: A fault injection and simulation secure collection." SAFECOMP 2016.
[Ko19] kokke. Tiny AES, release 1.0. https://github.com/kokke/tiny-AES-c, 2019. Accessed: February 22, 2024.

DFA on tiny AES [Ko19]

Not provided by the OpenTitan project
SW implementation of AES

Goal1: DFA on key schedule

# instructions: 221

# faults: 5 760

Performance: 7 mins (2 threads)
Results: Insecure

Goal2: DFA on 7t AES round

# instructions: 1 144

# faults: 38 912

Performance: 29 mins (8 threads)
Results: Insecure

17


https://github.com/kokke/tiny-AES-c

4 m Conclusion

0
-—




Conclusion

Co-verification Methodology

Two-step methodology to evaluate fault security
- Step 1 — Preliminary analysis of HW countermeasures
- Step 2 — Remaining faults not detected by the HW are evaluated with the SW

Step 1 — Fault-Resistant Partitioning

Provide unbounded security guarantees which are crucial for SW co-verification
Outperform state-of-the-art solvers like FIVER
First work to evaluate AES against 3 faults

Step 2 — System co-verification

Address previously intractable software verification of thousands of instructions
First work to prove the security of the first stage of a secure boot against fault attacks

19
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System Co-Verification

Evaluate whether exploitable faults with SW
Based on the Verilator environment

Exhaustively simulates exploitable faults
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Fix of the Register File

Vulnerability Report

- 172 exploitable faults — allow reading from an incorrect register location
- We reported the vulnerability to the OpenTitan project
- They acknowledged our findings

Vulnerability Fix

We proposed a security fix and formally prove it using our methodology
Our fix was integrated into the OpenTitan project

Secure lbex is now proven 1-fault secure unconditionally of the executed software
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Fault Propagation and Hidden Faults
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