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Experimental Characterization
• Post-Silicon (often a black box)
• Apply physical stress
• Observe the consequences on software

Observe 
consequences
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[BG11] Balasch et al. "An in-depth and black-box characterization of the effects of clock glitches on 8-bit MCUs." FDTC 2011.
[YG15] Yuce and Schaumont. "Improving fault attacks on embedded software using RISC pipeline characterization." FDTC 2015.
[PH19] Proy et al. "A first ISA-level characterization of EM pulse effects on superscalar microarchitectures: a secure software perspective." ARES 2019.
[LB18] Laurent et al. "On the importance of analysing microarchitecture for accurate software fault models." DSD 2018.
[LB19] Laurent et al. "Fault injection on hidden registers in a risc-v rocket processor and software countermeasures." DATE 2019.
[TB21] Trouchkine et al. "Electromagnetic fault injection against a complex CPU, toward new micro-architectural fault models." Journal of Cryptographic Engineering 2021. 4

Important to 
consider!

Need to Open the Box
• Unexplainable observed effects [PH19]
• Importance of microarchitectural mechanisms

• Pipelining [BG11, YG15]
• Prefetch Buffer [TA22]
• Forwarding [LB18, LB19]
• Memory Cache [TB21]

 Pre-silicon analyses should now consider processor microarchitecture
 Security evaluations require exhaustive methods

Experimental Characterization
• Post-Silicon (often a black box)
• Apply physical stress
• Observe the consequences on software
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 Formal Methods:  Reason on a system model to prove properties
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Combined Methods
 Originally for safety analysis with simulation
 Identify complex interplay between HW and SW
 Scalability issues (µArchiFI in 14 hours)

• 100 instructions
• Small in-order CPU (46 kGE)
• 1 fault injection
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Need
 Pre-silicon combined HW/SW analyses
 Exhaustive techniques, e.g., formal methods  ➔ Security guarantees  

Observation
 HW- or SW-only evaluations are insufficient
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Need
 Pre-silicon combined HW/SW analyses
 Exhaustive techniques, e.g., formal methods  ➔ Security guarantees  

Challenge: State space explosion problem
• Exploring the entire state space ➔ Scalability issues
• Addressing scalability is essential for practical applicability

Contributions
 Decompose HW/SW co-verification ➔ Contain the state space explosion
 Address previously intractable use cases with our new methodology

Observation
 HW- or SW-only evaluations are insufficient



   

                                 

1. Introduction
2. Methodology
3. Validation on Impeccable Circuits
4. Evaluation of OpenTitan
5. Conclusion
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Principle
• Security-critical systems implement HW protections
• Preliminary evaluation of the hardware security

• Must be run only once
• Faults not detected by HW must be detected by SW
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Principle
• Security-critical systems implement HW protections
• Preliminary evaluation of the hardware security

• Must be run only once
• Faults not detected by HW must be detected by SW

Requirements
 Need formal HW security guarantees to remove 

ineffective faults during SW co-verification

• Existing HW Techniques
• Compare fault-free trace (golden) vs. faulty trace
• Only provide bounded guarantees → Insufficient

• Faults can have long-term effects: e.g., hidden in microarchitectural registers
 Need unbounded guarantees



    

Step 1 — HW Verification

Concurrent Error Detection Scheme
 Spatial redundancy, e.g.,

• Duplication
• Triplication

 Informational redundancy e.g.,
• Error detection codes

 Raise an alert on a mismatch (with a potential delay d)

10
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Assumptions
• At most k faults are injected in the circuit

Guarantees
• Circuit’s outputs are correct, or an alert is raised after at most d clock cycles

Definition (k-Fault Security)

d

At most k faults

alert

incorrect 
output



    

Fault-Resistant Partitioning
Contribution
• Build and prove a fault-resistant partitioning of registers
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Assumptions
• Maximum budget of k faults, i.e., k1 + k2 ≤ k
• At most k1 faults in partitions at clock cycle j
• At most k2 faults in logic gates at clock cycles [ j, j + d ] 
• No alert between cycles j and j + d
Guarantees
• At most k1 + k2 faulty partitions at clock cycle j + 1
• No corrupted outputs at clock cycle j

Definition (k-Fault-Resistant Partitioning)

Example with k = 1
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Intuition
 Faulty values are confined in partitions and cannot alter the 

circuit behavior without being detected by countermeasures.

k-fault resistant partitioning ⇒ k-fault security

Theorem

Advantages
• No need to unroll the circuit — fault propagation is abstracted
• Provide unbounded guarantees

Limitations
• Over-approximation of k-fault security
• Some circuits are k-fault secure, but we cannot prove it

 Formal definitions and proofs are in the paper

Contribution
• Build and prove a fault-resistant partitioning of registers

Assumptions
• Maximum budget of k faults, i.e., k1 + k2 ≤ k
• At most k1 faults in partitions at clock cycle j
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[AM19] Aghaie, Anita, et al. "Impeccable circuits." IEEE Transactions on Computers 2019.
[RR21] Richter-Brockmann, Jan, et al. "Fiver–robust verification of countermeasures against fault injections”. CHES 2021.

Validation on Impeccable Circuits

13

• Against prior work like FIVER [RR21] • Evaluate verification performance • With multiple-fault attacks

Why Impeccable Circuits?
• No similar work exists on CPUs for comparison
• Validate the first step of our methodology 

Impeccable Circuits [AM19]
• Symmetric Bloc Ciphers (AES, LED, Simon, Skinny …) protected with Error Detection Codes (EDC).
• Designed to detect up to 3 faults (up to 7 faults for AES).
• An error signal is raised on fault detection and circuit outputs are zeroed out.
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[AM19] Aghaie, Anita, et al. "Impeccable circuits." IEEE Transactions on Computers 2019.
[RR21] Richter-Brockmann, Jan, et al. "Fiver–robust verification of countermeasures against fault injections”. CHES 2021. 13

Experimental Results
• With 2 faults, we prove security of:

• Skinny in 10 sec.

• With 3 faults (assuming no faults in the checker), we prove security of:
• Skinny in 40 sec.

• Against prior work like FIVER [RR21] • Evaluate verification performance • With multiple-fault attacks

Why Impeccable Circuits?
• No similar work exists on CPUs for comparison
• Validate the first step of our methodology 

Impeccable Circuits [AM19]
• Symmetric Bloc Ciphers (AES, LED, Simon, Skinny …) protected with Error Detection Codes (EDC).
• Designed to detect up to 3 faults (up to 7 faults for AES).
• An error signal is raised on fault detection and circuit outputs are zeroed out.

• AES in 55 hours — never been done before

• AES in 4 hours — FIVER took 130 hours
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OpenTitan’s Processor: Secure Ibex

15[JR18] Johnson, Scott, et al. "Titan: enabling a transparent silicon root of trust for cloud." Hot Chips: A Symposium on High Performance Chips. Vol. 194. 2018.
[Lo18] lowRISC. Ibex RISC-V Core github repository. https://github.com/lowRISC/ibex. Accessed: February 22, 2024. 

Secure Element OpenTitan [JR18]

Secure-Ibex (development version) [Lo18]
• RISC-V processor, 3 stages, in-order
• Concurrent Error Detection schemes, e.g.,

• Dual Core Lockstep (DCLS) with delay d
• Error Detection Codes in Register File

Fault Model
• Attacker with physical access to the processor
• Single transient bit-flip everywhere at any timeFigure - Secure Ibex Block Diagram



    

HW Evaluation: Results

16

Fault-Resistant Partitioning Results
• Ibex modules

o Prove 1-fault security of DCLS in 26 hours
o Identify 172 exploitable locations in Reg. File in 1 min 30
o Prove 3-seq.-fault security of Reg. File in 12 mins

• Full Secure Ibex
o Prove 1-fault security in 42 hours ( + 26 h)               

(assuming no faults in the 172 exploitable locations identified)



    

System Co-Verif: SW Case Studies + Results

First Stage of Secure Boot

• Provided by the OpenTitan project

• Check authenticity and integrity of the 
next boot stage

• Implement software protections e.g.,
• Step counters
• Test duplications

• Goal: Bypass memory signature check
• # instructions: 2 526
• # faults: 122 048
• Performance: 2.5 hours (8 threads)
• Results: Secure

17
[DP16] Dureuil, Louis, et al. "FISSC: A fault injection and simulation secure collection." SAFECOMP 2016.
[Ko19] kokke. Tiny AES, release 1.0. https://github.com/kokke/tiny-AES-c, 2019. Accessed: February 22, 2024.

https://github.com/kokke/tiny-AES-c
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VerifyPIN [DP16]

• Not provided by the OpenTitan project

• Compare two PINs for authentication
• 8 versions with various mix of protections

• Goal1: Bypass authentication
• Goal2: Increase max number of tries
• # instructions: 187
• # faults: 7 424
• Performance: 6 mins (1 thread)
• Results: Insecure

DFA on tiny AES [Ko19]

• Not provided by the OpenTitan project

• SW implementation of AES

• Goal1: DFA on key schedule
• # instructions: 221
• # faults: 5 760
• Performance: 7 mins (2 threads)
• Results: Insecure

• Goal2: DFA on 7th AES round 
• # instructions: 1 144
• # faults: 38 912
• Performance: 29 mins (8 threads)
• Results: Insecure

[DP16] Dureuil, Louis, et al. "FISSC: A fault injection and simulation secure collection." SAFECOMP 2016.
[Ko19] kokke. Tiny AES, release 1.0. https://github.com/kokke/tiny-AES-c, 2019. Accessed: February 22, 2024.

https://github.com/kokke/tiny-AES-c
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Co-verification Methodology

• Two-step methodology to evaluate fault security
• Step 1 — Preliminary analysis of HW countermeasures
• Step 2 — Remaining faults not detected by the HW are evaluated with the SW

Step 1 — Fault-Resistant Partitioning
• Provide unbounded security guarantees which are crucial for SW co-verification
• Outperform state-of-the-art solvers like FIVER
• First work to evaluate AES against 3 faults

Step 2 — System co-verification
• Address previously intractable software verification of thousands of instructions
• First work to prove the security of the first stage of a secure boot against fault attacks

Conclusion

19



  

Thank you

Questions?

Come and see my poster
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Implementation 1/2

[Bi20] Biere, Armin « CaDiCaL SAT solver ». https://github.com/arminbiere/cadical. 2020. Accessed February 2024. A

Fault-Resistant Partitioning 
1. BuildPartitioning procedure 

2. CheckIntegrity procedure

 Algorithm outputs are unprotected/ 
exploitable faults 

https://github.com/CEA-LIST/Fault-Resistant-Partitioning

• Rely on CaDiCaL SAT solver [Bi20] 
• About 4 000 lines of code
• Open-source:

https://github.com/arminbiere/cadical
https://github.com/CEA-LIST/Fault-Resistant-Partitioning


    

Implementation 2/2

B

System Co-Verification

 Evaluate whether exploitable faults with SW

 Based on the Verilator environment

 Exhaustively simulates exploitable faults



    

Fix of the Register File

C

Vulnerability Report
• 172 exploitable faults — allow reading from an incorrect register location
• We reported the vulnerability to the OpenTitan project
• They acknowledged our findings

Vulnerability Fix
• We proposed a security fix and formally prove it using our methodology
• Our fix was integrated into the OpenTitan project
• Secure Ibex is now proven 1-fault secure unconditionally of the executed software



    

Hardware Fix + Prove

D

Register File Vulnerability Register File Security Fix



    

Fault Propagation and Hidden Faults

E
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