

Fault-Resistant Partitioning of Secure CPUs for
System Co-Verification against Faults*

Simon Tollec1, Vedad Hadžić2, Pascal Nasahl2,3, Mihail Asavoae1, Roderick Bloem2,
Damien Couroussé4, Karine Heydemann5,6, Mathieu Jan1, and Stefan Mangard2

1 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2 Graz University of Technology, Graz, Austria
3 lowRISC C.I.C., Cambridge, United Kingdom

4 Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France
5 Sorbonne Univ., CNRS, LIP6, F-75005, Paris, France

6 Thales DIS, France

JAIF, Oct 1, 2024
* Publié à CHES’24

Introduction1
2

CPU’s Abstraction Levels during FIs

State of the Art & Motivations

3

CPU’s Abstraction Levels during FIs

State of the Art & Motivations

3

State of the Art & Motivations

4

Experimental Characterization
• Post-Silicon (often a black box)
• Apply physical stress
• Observe the consequences on software

Observe
consequences

State of the Art & Motivations

[BG11] Balasch et al. "An in-depth and black-box characterization of the effects of clock glitches on 8-bit MCUs." FDTC 2011.
[YG15] Yuce and Schaumont. "Improving fault attacks on embedded software using RISC pipeline characterization." FDTC 2015.
[PH19] Proy et al. "A first ISA-level characterization of EM pulse effects on superscalar microarchitectures: a secure software perspective." ARES 2019.
[LB18] Laurent et al. "On the importance of analysing microarchitecture for accurate software fault models." DSD 2018.
[LB19] Laurent et al. "Fault injection on hidden registers in a risc-v rocket processor and software countermeasures." DATE 2019.
[TB21] Trouchkine et al. "Electromagnetic fault injection against a complex CPU, toward new micro-architectural fault models." Journal of Cryptographic Engineering 2021. 4

Important to
consider!

Need to Open the Box
• Unexplainable observed effects [PH19]
• Importance of microarchitectural mechanisms

• Pipelining [BG11, YG15]
• Prefetch Buffer [TA22]
• Forwarding [LB18, LB19]
• Memory Cache [TB21]

 Pre-silicon analyses should now consider processor microarchitecture
 Security evaluations require exhaustive methods

Experimental Characterization
• Post-Silicon (often a black box)
• Apply physical stress
• Observe the consequences on software

5

Related Works
Ab

st
ra

ct
io

n
le

ve
ls

AutoFault
[BG17] VerFI

[AW20]
FIVER
[RR21]

SYNFI
[NO22]

SymPLFIED
[PN08]

FiSim
[Ri20]

LAZART
[PM14]

ARMORY
[HS21]

SAMVA
[GH23]

BINSEC
[DB23]

MEFISTO
[JA94]

VeriFY
[S97]

LIFTING
[BN08] SimpliFI

[GS21]

µArchiFI
[TA23]

HW

SW

Simulation

Formal Methods

FIRMER
[TG24]

Pre-Silicon Evaluation: Simulation vs Formal Methods
 Simulation: Execute concrete instances of the system
 Formal Methods: Reason on a system model to prove properties

Related Works

5

AutoFault
[BG17] VerFI

[AW20]
FIVER
[RR21]

SYNFI
[NO22]

SymPLFIED
[PN08]

FiSim
[Ri20]

LAZART
[PM14]

ARMORY
[HS21]

SAMVA
[GH23]

BINSEC
[DB23]

MEFISTO
[JA94]

VeriFY
[S97]

LIFTING
[BN08] SimpliFI

[GS21]

µArchiFI
[TA23]

HW

SW

Simulation

Formal Methods
Ab

st
ra

ct
io

n
le

ve
ls

FIRMER
[TG24]

Hardware Methods
 Dedicated to evaluate crypto circuits
 Compare fault-free vs. faulted circuits
 Performance (FIVER on AES):

 1 fault in 22 sec.
 2 faults in 130 hours

 Cannot model program execution

Pre-Silicon Evaluation: Simulation vs Formal Methods
 Simulation: Execute concrete instances of the system
 Formal Methods: Reason on a system model to prove properties

Related Works

5

AutoFault
[BG17] VerFI

[AW20]
FIVER
[RR21]

SYNFI
[NO22]

SymPLFIED
[PN08]

FiSim
[Ri20]

LAZART
[PM14]

ARMORY
[HS21]

SAMVA
[GH23]

BINSEC
[DB23]

MEFISTO
[JA94]

VeriFY
[S97]

LIFTING
[BN08] SimpliFI

[GS21]

µArchiFI
[TA23]

HW

SW

Simulation

Formal Methods
Ab

st
ra

ct
io

n
le

ve
ls

FIRMER
[TG24]

Pre-Silicon Evaluation: Simulation vs Formal Methods
 Simulation: Execute concrete instances of the system
 Formal Methods: Reason on a system model to prove properties

Hardware Methods
 Dedicated to evaluate crypto circuits
 Compare fault-free vs. faulted circuits
 Performance (FIVER on AES):

 1 fault in 22 sec.
 2 faults in 130 hours

 Cannot model program execution

Software Methods
 ISA fault models, e.g., inst. skip
 Performance (BINSEC):

 Bootloader: 1 fault in 9 sec.
 PIN comp.: 10 faults < 1 sec.

 Ignore the underlying processor
implementation

Combined Methods
 Originally for safety analysis with simulation
 Identify complex interplay between HW and SW
 Scalability issues (µArchiFI in 14 hours)

• 100 instructions
• Small in-order CPU (46 kGE)
• 1 fault injection

Related Works

5

Ab
st

ra
ct

io
n

le
ve

ls

AutoFault
[BG17] VerFI

[AW20]
FIVER
[RR21]

SYNFI
[NO22]

SymPLFIED
[PN08]

FiSim
[Ri20]

LAZART
[PM14]

ARMORY
[HS21]

SAMVA
[GH23]

BINSEC
[DB23]

MEFISTO
[JA94]

VeriFY
[S97]

LIFTING
[BN08] SimpliFI

[GS21]

µArchiFI
[TA23]

HW

SW

Simulation

Formal Methods

FIRMER
[TG24]

Pre-Silicon Evaluation: Simulation vs Formal Methods
 Simulation: Execute concrete instances of the system
 Formal Methods: Reason on a system model to prove properties

Hardware Methods
 Dedicated to evaluate crypto circuits
 Compare fault-free vs. faulted circuits
 Performance (FIVER on AES):

 1 fault in 22 sec.
 2 faults in 130 hours

 Cannot model program execution

Software Methods
 ISA fault models, e.g., inst. skip
 Performance (BINSEC):

 Bootloader: 1 fault in 9 sec.
 PIN comp.: 10 faults < 1 sec.

 Ignore the underlying processor
implementation

Problem Statement and Contributions

6

Need
 Pre-silicon combined HW/SW analyses
 Exhaustive techniques, e.g., formal methods ➔ Security guarantees

Observation
 HW- or SW-only evaluations are insufficient

Problem Statement and Contributions

6

Need
 Pre-silicon combined HW/SW analyses
 Exhaustive techniques, e.g., formal methods ➔ Security guarantees

Challenge: State space explosion problem
• Exploring the entire state space ➔ Scalability issues
• Addressing scalability is essential for practical applicability

Observation
 HW- or SW-only evaluations are insufficient

Problem Statement and Contributions

6

Need
 Pre-silicon combined HW/SW analyses
 Exhaustive techniques, e.g., formal methods ➔ Security guarantees

Challenge: State space explosion problem
• Exploring the entire state space ➔ Scalability issues
• Addressing scalability is essential for practical applicability

Contributions
 Decompose HW/SW co-verification ➔ Contain the state space explosion
 Address previously intractable use cases with our new methodology

Observation
 HW- or SW-only evaluations are insufficient

1. Introduction
2. Methodology
3. Validation on Impeccable Circuits
4. Evaluation of OpenTitan
5. Conclusion

Outline

Methodology2
8

Methodology Overview

9

Principle
• Security-critical systems implement HW protections
• Preliminary evaluation of the hardware security

• Must be run only once
• Faults not detected by HW must be detected by SW

Methodology Overview

9

Principle
• Security-critical systems implement HW protections
• Preliminary evaluation of the hardware security

• Must be run only once
• Faults not detected by HW must be detected by SW

Requirements
 Need formal HW security guarantees to remove

ineffective faults during SW co-verification

• Existing HW Techniques
• Compare fault-free trace (golden) vs. faulty trace
• Only provide bounded guarantees → Insufficient

• Faults can have long-term effects: e.g., hidden in microarchitectural registers
 Need unbounded guarantees

Step 1 — HW Verification

Concurrent Error Detection Scheme
 Spatial redundancy, e.g.,

• Duplication
• Triplication

 Informational redundancy e.g.,
• Error detection codes

 Raise an alert on a mismatch (with a potential delay d)

10

d

Step 1 — HW Verification

Concurrent Error Detection Scheme
 Spatial redundancy, e.g.,

• Duplication
• Triplication

 Informational redundancy e.g.,
• Error detection codes

 Raise an alert on a mismatch (with a potential delay d)

10

Assumptions
• At most k faults are injected in the circuit

Guarantees
• Circuit’s outputs are correct, or an alert is raised after at most d clock cycles

Definition (k-Fault Security)

d

At most k faults

alert

incorrect
output

Fault-Resistant Partitioning
Contribution
• Build and prove a fault-resistant partitioning of registers

11

Assumptions
• Maximum budget of k faults, i.e., k1 + k2 ≤ k
• At most k1 faults in partitions at clock cycle j
• At most k2 faults in logic gates at clock cycles [j, j + d]
• No alert between cycles j and j + d
Guarantees
• At most k1 + k2 faulty partitions at clock cycle j + 1
• No corrupted outputs at clock cycle j

Definition (k-Fault-Resistant Partitioning)

Example with k = 1

Fault-Resistant Partitioning
Contribution
• Build and prove a fault-resistant partitioning of registers

11

Assumptions
• Maximum budget of k faults, i.e., k1 + k2 ≤ k
• At most k1 faults in partitions at clock cycle j
• At most k2 faults in logic gates at clock cycles [j, j + d]
• No alert between cycles j and j + d
Guarantees
• At most k1 + k2 faulty partitions at clock cycle j + 1
• No corrupted outputs at clock cycle j

Definition (k-Fault-Resistant Partitioning)

Example with k = 1

At most
k1 faults

Fault-Resistant Partitioning
Contribution
• Build and prove a fault-resistant partitioning of registers

11

Assumptions
• Maximum budget of k faults, i.e., k1 + k2 ≤ k
• At most k1 faults in partitions at clock cycle j
• At most k2 faults in logic gates at clock cycles [j, j + d]
• No alert between cycles j and j + d
Guarantees
• At most k1 + k2 faulty partitions at clock cycle j + 1
• No corrupted outputs at clock cycle j

Definition (k-Fault-Resistant Partitioning)

Example with k = 1

At most
k1 faults

At most
k2 faults

Fault-Resistant Partitioning
Contribution
• Build and prove a fault-resistant partitioning of registers

11

Assumptions
• Maximum budget of k faults, i.e., k1 + k2 ≤ k
• At most k1 faults in partitions at clock cycle j
• At most k2 faults in logic gates at clock cycles [j, j + d]
• No alert between cycles j and j + d
Guarantees
• At most k1 + k2 faulty partitions at clock cycle j + 1
• No corrupted outputs at clock cycle j

Definition (k-Fault-Resistant Partitioning)

Example with k = 1

At most
k1 faults

At most
k2 faults

= 0

Fault-Resistant Partitioning
Contribution
• Build and prove a fault-resistant partitioning of registers

11

Assumptions
• Maximum budget of k faults, i.e., k1 + k2 ≤ k
• At most k1 faults in partitions at clock cycle j
• At most k2 faults in logic gates at clock cycles [j, j + d]
• No alert between cycles j and j + d
Guarantees
• At most k1 + k2 faulty partitions at clock cycle j + 1
• No corrupted outputs at clock cycle j

Definition (k-Fault-Resistant Partitioning)

Example with k = 1

= 0

At most k1+ k2
faulty partitions

valid output

Fault-Resistant Partitioning
Contribution
• Build and prove a fault-resistant partitioning of registers

11

Assumptions
• Maximum budget of k faults, i.e., k1 + k2 ≤ k
• At most k1 faults in partitions at clock cycle j
• At most k2 faults in logic gates at clock cycles [j, j + d]
• No alert between cycles j and j + d
Guarantees
• At most k1 + k2 faulty partitions at clock cycle j + 1
• No corrupted outputs at clock cycle j

Definition (k-Fault-Resistant Partitioning)

Intuition
 Faulty values are confined in partitions and cannot alter the

circuit behavior without being detected by countermeasures.

Example with k = 1

= 0

At most k1+ k2
faulty partitions

valid output

Fault-Resistant Partitioning

11

Intuition
 Faulty values are confined in partitions and cannot alter the

circuit behavior without being detected by countermeasures.

k-fault resistant partitioning ⇒ k-fault security

Theorem

Advantages
• No need to unroll the circuit — fault propagation is abstracted
• Provide unbounded guarantees

Limitations
• Over-approximation of k-fault security
• Some circuits are k-fault secure, but we cannot prove it

 Formal definitions and proofs are in the paper

Contribution
• Build and prove a fault-resistant partitioning of registers

Assumptions
• Maximum budget of k faults, i.e., k1 + k2 ≤ k
• At most k1 faults in partitions at clock cycle j
• At most k2 faults in logic gates at clock cycles [j, j + d]
• No alert between cycles j and j + d
Guarantees
• At most k1 + k2 faulty partitions at clock cycle j + 1
• No corrupted outputs at clock cycle j

Definition (k-Fault-Resistant Partitioning)

Example with k = 1

= 0

At most k1+ k2
faulty partitions

valid output

Validation on
Impeccable Circuits3

12

[AM19] Aghaie, Anita, et al. "Impeccable circuits." IEEE Transactions on Computers 2019.
[RR21] Richter-Brockmann, Jan, et al. "Fiver–robust verification of countermeasures against fault injections”. CHES 2021.

Validation on Impeccable Circuits

13

• Against prior work like FIVER [RR21] • Evaluate verification performance • With multiple-fault attacks

Why Impeccable Circuits?
• No similar work exists on CPUs for comparison
• Validate the first step of our methodology

Impeccable Circuits [AM19]
• Symmetric Bloc Ciphers (AES, LED, Simon, Skinny …) protected with Error Detection Codes (EDC).
• Designed to detect up to 3 faults (up to 7 faults for AES).
• An error signal is raised on fault detection and circuit outputs are zeroed out.

Validation on Impeccable Circuits

[AM19] Aghaie, Anita, et al. "Impeccable circuits." IEEE Transactions on Computers 2019.
[RR21] Richter-Brockmann, Jan, et al. "Fiver–robust verification of countermeasures against fault injections”. CHES 2021. 13

Experimental Results
• With 2 faults, we prove security of:

• Skinny in 10 sec.

• With 3 faults (assuming no faults in the checker), we prove security of:
• Skinny in 40 sec.

• Against prior work like FIVER [RR21] • Evaluate verification performance • With multiple-fault attacks

Why Impeccable Circuits?
• No similar work exists on CPUs for comparison
• Validate the first step of our methodology

Impeccable Circuits [AM19]
• Symmetric Bloc Ciphers (AES, LED, Simon, Skinny …) protected with Error Detection Codes (EDC).
• Designed to detect up to 3 faults (up to 7 faults for AES).
• An error signal is raised on fault detection and circuit outputs are zeroed out.

• AES in 55 hours — never been done before

• AES in 4 hours — FIVER took 130 hours

OpenTitan Evaluation4
14

OpenTitan’s Processor: Secure Ibex

15[JR18] Johnson, Scott, et al. "Titan: enabling a transparent silicon root of trust for cloud." Hot Chips: A Symposium on High Performance Chips. Vol. 194. 2018.
[Lo18] lowRISC. Ibex RISC-V Core github repository. https://github.com/lowRISC/ibex. Accessed: February 22, 2024.

Secure Element OpenTitan [JR18]

Secure-Ibex (development version) [Lo18]
• RISC-V processor, 3 stages, in-order
• Concurrent Error Detection schemes, e.g.,

• Dual Core Lockstep (DCLS) with delay d
• Error Detection Codes in Register File

Fault Model
• Attacker with physical access to the processor
• Single transient bit-flip everywhere at any timeFigure - Secure Ibex Block Diagram

HW Evaluation: Results

16

Fault-Resistant Partitioning Results
• Ibex modules

o Prove 1-fault security of DCLS in 26 hours
o Identify 172 exploitable locations in Reg. File in 1 min 30
o Prove 3-seq.-fault security of Reg. File in 12 mins

• Full Secure Ibex
o Prove 1-fault security in 42 hours (+ 26 h)

(assuming no faults in the 172 exploitable locations identified)

System Co-Verif: SW Case Studies + Results

First Stage of Secure Boot

• Provided by the OpenTitan project

• Check authenticity and integrity of the
next boot stage

• Implement software protections e.g.,
• Step counters
• Test duplications

• Goal: Bypass memory signature check
• # instructions: 2 526
• # faults: 122 048
• Performance: 2.5 hours (8 threads)
• Results: Secure

17
[DP16] Dureuil, Louis, et al. "FISSC: A fault injection and simulation secure collection." SAFECOMP 2016.
[Ko19] kokke. Tiny AES, release 1.0. https://github.com/kokke/tiny-AES-c, 2019. Accessed: February 22, 2024.

https://github.com/kokke/tiny-AES-c

System Co-Verif: SW Case Studies + Results

First Stage of Secure Boot

• Provided by the OpenTitan project

• Check authenticity and integrity of the
next boot stage

• Implement software protections e.g.,
• Step counters
• Test duplications

• Goal: Bypass memory signature check
• # instructions: 2 526
• # faults: 122 048
• Performance: 2.5 hours (8 threads)
• Results: Secure

17

VerifyPIN [DP16]

• Not provided by the OpenTitan project

• Compare two PINs for authentication
• 8 versions with various mix of protections

• Goal1: Bypass authentication
• Goal2: Increase max number of tries
• # instructions: 187
• # faults: 7 424
• Performance: 6 mins (1 thread)
• Results: Insecure

DFA on tiny AES [Ko19]

• Not provided by the OpenTitan project

• SW implementation of AES

• Goal1: DFA on key schedule
• # instructions: 221
• # faults: 5 760
• Performance: 7 mins (2 threads)
• Results: Insecure

• Goal2: DFA on 7th AES round
• # instructions: 1 144
• # faults: 38 912
• Performance: 29 mins (8 threads)
• Results: Insecure

[DP16] Dureuil, Louis, et al. "FISSC: A fault injection and simulation secure collection." SAFECOMP 2016.
[Ko19] kokke. Tiny AES, release 1.0. https://github.com/kokke/tiny-AES-c, 2019. Accessed: February 22, 2024.

https://github.com/kokke/tiny-AES-c

Conclusion4
18

Co-verification Methodology

• Two-step methodology to evaluate fault security
• Step 1 — Preliminary analysis of HW countermeasures
• Step 2 — Remaining faults not detected by the HW are evaluated with the SW

Step 1 — Fault-Resistant Partitioning
• Provide unbounded security guarantees which are crucial for SW co-verification
• Outperform state-of-the-art solvers like FIVER
• First work to evaluate AES against 3 faults

Step 2 — System co-verification
• Address previously intractable software verification of thousands of instructions
• First work to prove the security of the first stage of a secure boot against fault attacks

Conclusion

19

Thank you

Questions?

Come and see my poster

[JA94] Jenn, Eric, et al. "Fault injection into VHDL models: the MEFISTO tool." Predictably Dependable Computing Systems. Springer Berlin Heidelberg, 1995.

[ST97] Sieh, Volkmar, Oliver, Frank Balbach. "VERIFY: Evaluation of reliability using VHDL-models with embedded fault descriptions." 27th International Symposium on Fault Tolerant Computing. 1997.

[BN08] Bosio, Alberto, and Giorgio Di Natale. "Lifting: A flexible open-source fault simulator." 2008 17th Asian Test Symposium. IEEE, 2008.

[GS21] Grycel, Jacob, and Patrick Schaumont. "Simplifi: hardware simulation of embedded software fault attacks." Cryptography 5.2 (2021): 15.

[BG17] Burchard, Jan, et al. "Autofault: towards automatic construction of algebraic fault attacks." 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). IEEE, 2017.

[AW20] Arribas, Victor, et al. "Cryptographic fault diagnosis using VerFI." 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2020.

[RR21] Richter-Brockmann, Jan, et al. "Fiver–robust verification of countermeasures against fault injections." IACR Transactions on Cryptographic Hardware and Embedded Systems (2021).

[NO22] Nasahl, Pascal, et al. "SYNFI: pre-silicon fault analysis of an open-source secure element." arXiv preprint arXiv:2205.04775 (2022).

[PN08] Pattabiraman, Karthik, et al. "SymPLFIED: Symbolic program-level fault injection and error detection framework." International Conference on Dependable Systems and Networks With FTCS and
DCC (DSN). IEEE, 2008.

[Ri20] Riscure. Fisim. https://github.com/Riscure/FiSim. Accessed: February 22, 2024.

[HG21] Hauschild, Florian, et al. "ARCHIE: A QEMU-Based framework for architecture-independent evaluation of faults." Workshop on Fault Detection and Tolerance in Cryptography (FDTC), 2021.

[HS21] Hoffmann, Max, et al. "ARMORY: fully automated and exhaustive fault simulation on ARM-M binaries." IEEE Transactions on Information Forensics and Security 16 (2020).

[PM14] Potet, Marie-Laure, et al. "Lazart: A symbolic approach for evaluation the robustness of secured codes against control flow injections." International Conference on Software Testing, Verification
and Validation. IEEE, 2014.

[GJ17] Given-Wilson, Thomas, et al. "An automated formal process for detecting fault injection vulnerabilities in binaries and case study on present." 2017, IEEE, 2017.

[BH19] Bréjon, Jean-Baptiste, et al. "Fault attack vulnerability assessment of binary code." Proceedings of the Sixth Workshop on Cryptography and Security in Computing Systems. 2019.

[GH23] Gicquel, Antoine, et al. "SAMVA: static analysis for multi-fault attack paths determination." Workshop on Constructive Side-Channel Analysis and Secure Design, 2023.

[DB23] Ducousso, Soline, Sébastien Bardin, and Marie-Laure Potet. "Adversarial Reachability for Program-level Security Analysis." ESOP. 2023.

[TA23] Tollec, Simon, et al. " µArchiFI: Formal Modeling and Verification Strategies for Microarchitectural Fault Injections." Formal Methods in Computer Aided Design (FMCAD), 2023.

[DP16] Dureuil, Louis, et al. "FISSC: A fault injection and simulation secure collection." Computer Safety, Reliability, and Security: 35th International Conference, SAFECOMP 2016.

[kok19] kokke. Tiny AES. https://github.com/kokke/tiny-AES-c. Accessed: February 22, 2024.

[TG24] Tan,Huiyu, et al. "SAT-based Formal Fault-Resistance Verification of Cryptographic Circuits." IACR Transactions on Cryptographic Hardware and Embedded Systems (2024).

Bibliography

A

https://github.com/kokke/tiny-AES-c

Implementation 1/2

[Bi20] Biere, Armin « CaDiCaL SAT solver ». https://github.com/arminbiere/cadical. 2020. Accessed February 2024. A

Fault-Resistant Partitioning
1. BuildPartitioning procedure

2. CheckIntegrity procedure

 Algorithm outputs are unprotected/
exploitable faults

https://github.com/CEA-LIST/Fault-Resistant-Partitioning

• Rely on CaDiCaL SAT solver [Bi20]
• About 4 000 lines of code
• Open-source:

https://github.com/arminbiere/cadical
https://github.com/CEA-LIST/Fault-Resistant-Partitioning

Implementation 2/2

B

System Co-Verification

 Evaluate whether exploitable faults with SW

 Based on the Verilator environment

 Exhaustively simulates exploitable faults

Fix of the Register File

C

Vulnerability Report
• 172 exploitable faults — allow reading from an incorrect register location
• We reported the vulnerability to the OpenTitan project
• They acknowledged our findings

Vulnerability Fix
• We proposed a security fix and formally prove it using our methodology
• Our fix was integrated into the OpenTitan project
• Secure Ibex is now proven 1-fault secure unconditionally of the executed software

Hardware Fix + Prove

D

Register File Vulnerability Register File Security Fix

Fault Propagation and Hidden Faults

E

	Fault-Resistant Partitioning of Secure CPUs for�System Co-Verification against Faults*
	Introduction
	State of the Art & Motivations
	State of the Art & Motivations
	State of the Art & Motivations
	State of the Art & Motivations
	Related Works
	Related Works
	Related Works
	Related Works
	Problem Statement and Contributions
	Problem Statement and Contributions
	Problem Statement and Contributions
	Outline
	Methodology
	Methodology Overview
	Methodology Overview
	Step 1 — HW Verification
	Step 1 — HW Verification
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Validation on Impeccable Circuits
	Validation on Impeccable Circuits
	Validation on Impeccable Circuits
	OpenTitan Evaluation
	OpenTitan’s Processor: Secure Ibex
	HW Evaluation: Results
	System Co-Verif: SW Case Studies + Results
	System Co-Verif: SW Case Studies + Results
	Conclusion
	Conclusion
	Thank you
	Bibliography
	Implementation 1/2
	Implementation 2/2
	Fix of the Register File
	Hardware Fix + Prove
	Fault Propagation and Hidden Faults

