list
]

Fault-Resistant Partitioning of Secure CPUs for
System Co-Verification against Faults*

Simon Tollec?!, Vedad Hadzi¢?, Pascal Nasahl?3, Mihail Asavoae', Roderick Bloem?,
Damien Couroussé?, Karine Heydemann®%, Mathieu Jan', and Stefan Mangard?

T Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2 Graz University of Technology, Graz, Austria
3lowRISC C.I.C., Cambridge, United Kingdom

4 Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France
5Sorbonne Univ., CNRS, LIP6, F-75005, Paris, France
6 Thales DIS, France

* Publié a CHES’24

whTy THALES 2% @iasc USA

Grazm Grenoble Alpes

1 m Introduction

State of the Art & Motivations

CPU’s Abstraction Levels during Fis

Instruction Set Architecture (ISA)

>

Instr Instr
Fetch Decode

Execute Back

Write

HArchitecture level

-2
-

i

Instr
Memory

< Hardware Layer Software La)t/e>
A

Circuit level

Physical level

Fault Propagation

| Data |
Memory

Q- Memory A

Logic Gates—[>o— Flip-Flops _E

RAM

Fault Injection

_| Transistors and
Metal Layers €———

Physical Stress

4
7

Faulty prefetch,
Faulty branch-pred.,
Faulty forwarding

Bit-flip, bit-set,
bit-reset

%Clockm“_ EM _W_ Light@ Voltage—||—

State of the Art & Motivations

CPU’s Abstraction Levels during Fis

int main (password) {

Source-code level

if check(password)
authenticate(); e
else error(); Fault Exploitation
}
text .data
OX....... OX....onn
1 OX....... OX......
Blnary Ievel OX....... OX.......
OX....... OX.......
T Fault Consequences

7
4

Control-flow and
Data corrpution

Instr. skip,

Branch inversion,
Register corruption

Instruction Set Architecture (ISA)

< Hardware Layer Software La):/e>
A

>

State of the Art & Motivations

Experimental Characterization

Post-Silicon (often a black box)
Apply physical stress

Observe the consequences on software

Observe
consequences

| Software Layer

(I Hardware Layer |

/\ﬁ Source-code level |

Binary level
g

int main (password) {
if check(password)
authenticate();
else error();

TFauIt Exploitation

Fault Consequences)

~N

Control-flow and
Data corrpution

Instr. skip,
Branch inversion,
Register corruption

R

<

V 2

| Physical level | -|E

.

Transistors arlld
Metal Layers €——

Physical Stress

%Clock| | m EM_W_ Light@ Voltage—]

State of the Art & Motivations

Experimental Characterization
* Post-Silicon (often a black box)

* Apply physical stress

* Observe the consequences on software

Instr Instr Write

Need to Open the Box I e ety prefetch
« Unexplainable observed effects [PH19 - 59 [Reg) |- [AL]|>|SU]f . |g 8 % Faulty branch-pred.
p [] |pArchltecture level | Eé Z |[Buffer] fie ||| —— | = g§ Faulty forwarding

« Importance of microarchitectural mechanisms
« Pipelining [BG11, YG15]
« Prefetch Buffer [TA22]
« Forwarding [LB18, LB19]
« Memory Cache [TB21]

Important to
consider

< Hardware Layer | [Software La):/e>
A

» Pre-silicon analyses should now consider processor microarchitecture
> Security evaluations require exhaustive methods

[BG11] Balasch et al. "An in-depth and black-box characterization of the effects of clock glitches on 8-bit MCUs." FDTC 2011.
[YG15] Yuce and Schaumont. "Improving fault attacks on embedded software using RISC pipeline characterization." FDTC 2015.
[PH19] Proy et al. "A first ISA-level characterization of EM pulse effects on superscalar microarchitectures: a secure software perspective." ARES 2019.
[LB18] Laurent et al. "On the importance of analysing microarchitecture for accurate software fault models." DSD 2018.
@ [LB19] Laurent et al. "Fault injection on hidden registers in a risc-v rocket processor and software countermeasures." DATE 2019. 4
[TB21] Trouchkine et al. "Electromagnetic fault injection against a complex CPU, toward new micro-architectural fault models." Journal of Cryptographic Engineering 2021.

Related Works () simutation

/\ LAZART D Formal Methods
[PM14]

SW |& - N Ve N/ N \
o SymPLFIED Fisim || ARMORY || SAMVA |[BINSEC
D [PNO8] Rri2o] || [Hs21] || [GH23] || [DB23]

e I Rttty MEFISTO [| VerFY [LIFTING pArchiFl [

S a4l || s971 || BNO8I || simpirr || [TA23]
O || AutoFault || y/orp) || FVER FIRMER [GS21]
© || Bc17 er

H W _: [AW20] [RR21] [TG24]
2 SYNFI - J\ J\ J \ J
g [NO22]

—_

Pre-Silicon Evaluation: Simulation vs Formal Methods
= Simulation: Execute concrete instances of the system
= Formal Methods: Reason on a system model to prove properties

Related Works () simutation

.
o
3
o
=
(0)
=
(@)
o
()]

%)
SW |2
>
Q@
I =1 SR PP Y
O|F
O || AutoFaut
S| e || verr1 || FIVER FIRMER
HW = [] [AW20] [RR21] [TG24]
2 SYNFI
< [NO22]
\

Pre-Silicon Evaluation: Simulation vs Formal Methods
= Simulation: Execute concrete instances of the system
= Formal Methods: Reason on a system model to prove properties

Hardware Methods
= Dedicated to evaluate crypto circuits
= Compare fault-free vs. faulted circuits
= Performance (FIVER on AES):
= 1 fault in 22 sec.
= 2 faults in 130 hours
@ » Cannot model program execution 5

Related Works () simutation

(" A
/\ LAZART D Formal Methods
[PM14]
SW |«
g SymPLFIED FiSim || ARMORY || SAMVA || BINSEC
() [PNO8] [Ri20] [HS21] || [GH23] || [DB23]
e \S <\ I I D e
T e R
3=
O
3|
HW |+
o
<

Pre-Silicon Evaluation: Simulation vs Formal Methods
= Simulation: Execute concrete instances of the system
= Formal Methods: Reason on a system model to prove properties

Hardware Methods Software Methods

= Dedicated to evaluate crypto circuits = |SA fault models, e.g., inst. skip

= Compare fault-free vs. faulted circuits = Performance (BINSEC):

= Performance (FIVER on AES): = Bootloader: 1 faultin 9 sec.
= 1 fault in 22 sec. = PIN comp.: 10 faults < 1 sec.
= 2 faults in 130 hours » Ignore the underlying processor

@ » Cannot model program execution implementation 5

Related Works () simutation

.
o
3
o
=
(0)
=
(@)
o
()]

SW % (aYa e N N M)
®
ek I = R it - MEFISTO I VerFY [| LIFTING 1 wArchiF! |
._g [JA94] [S97] [BNO8] || simpiiFl || [TA23]
g [GS21]
| S
HW E - AN J\ J —
<
. S y,
Pre-Silicon Evaluation: Simulation vs Formal Methods
= Simulation: Execute concrete instances of the system
= Formal Methods: Reason on a system model to prove properties
Hardware Methods Software Methods Combined Methods
= Dedicated to evaluate crypto circuits = |SA fault models, e.g., inst. skip = Originally for safety analysis with simulation
= Compare fault-free vs. faulted circuits = Performance (BINSEC): = |dentify complex interplay between HW and SW
= Performance (FIVER on AES): = Bootloader: 1 faultin 9 sec. » Scalability issues (uArchiFl in 14 hours)
= 1 fault in 22 sec. = PIN comp.: 10 faults < 1 sec. * 100 instructions
= 2 faultsin 130 hours » Ignore the underlying processor * Small in-order CPU (46 kGE)

@ > Cannot model program execution implementation - 1 fault injection 5

Problem Statement and Contributions

Observation
» HW- or SW-only evaluations are insufficient

Need
> Pre-silicon combined HW/SW analyses
> Exhaustive techniques, e.g., formal methods => Security guarantees

Problem Statement and Contributions

Observation
» HW- or SW-only evaluations are insufficient

Need
> Pre-silicon combined HW/SW analyses
> Exhaustive techniques, e.g., formal methods => Security guarantees

Challenge: State space explosion problem
« Exploring the entire state space - Scalability issues
» Addressing scalability is essential for practical applicability

Problem Statement and Contributions

Observation
» HW- or SW-only evaluations are insufficient

Need
> Pre-silicon combined HW/SW analyses
> Exhaustive techniques, e.g., formal methods => Security guarantees

Challenge: State space explosion problem
« Exploring the entire state space = Scalability issues
» Addressing scalability is essential for practical applicability

Contributions
» Decompose HW/SW co-verification = Contain the state space explosion
» Address previously intractable use cases with our new methodology

Outline

2. Methodology
3. Validation on Impeccable Circuits
4. Evaluation of OpenTitan

5. Conclusion

2 m Methodology

Methodology Overview

inci R N I\ Verificati
Prmmple. | | Hardware| (B g | N\ erficaon
- Security-critical systems implement HW protections Design | ° | | » vad
 Preliminary evaluation of the hardware security : Fault-Resistant | Verification result
- Must be run only once hl/:[?)l(liletl } »| Partitioning : »| Robust // Vulnerable
« Faults not detected by HW must be detected by SW ! |
Attack [D\ >». 4
Order | B | —] — Reduced
Step 1 — HW Verification | | Fault Model
Attacker_(pll
Goal Verificati 1
System Model erification result
ISV L N | | Robust // Vulnerable
By | > Modelng | Veiiaton Iy
o odelin ! verication \
Program L ~ Com _,!_) \ Counter
ved ‘ example

Step 2 — System Verification

Methodology Overview

Principle
Hardware
« Security-critical systems implement HW protections Design

- Preliminary evaluation of the hardware security

- Must be run only once Fault }
Model
- Faults not detected by HW must be detected by SW
Attack [I\
Order | k
i Attacker_(le
Requirements Goal
> Need formal HW security guarantees to remove
ineffective faults during SW co-verification Binary =
Program €

« Existing HW Techniques
- Compare fault-free trace (golden) vs. faulty trac
« Only provide bounded guarantees — Insufficient

—>» vcd

\\ Verification

logs

Verification result

I

- |
: Fault-Resistant |
| S ani I
> Partitioning |
I

Reduced

Step 1 — HW Verification | | Fault Model

» Robust Vulnerable

i System Model Verificgtion result
ISV) 2 | | Robust / Vulnerable
| System | | System >
3| Modeling | | Verification B D
L J G _ \ Counter

Step 2 — System Verification

- Faults can have long-term effects: e.g., hidden in microarchitectural registers

> Need unbounded guarantees

ved I example

Step 1 — HW Verification

Concurrent Error Detection Scheme

= Spatial redundancy, e.g.,
Duplication
Triplication

= |Informational redundancy e.g.,
Error detection codes

> Raise an alert on a mismatch (with a potential delay d)

input

Target T'

Prediction P

d
output <---

Checker C

L > alert

10

Step 1 — HW Verification

i At most k faults

Concurrent Error Detection Scheme
= Spatial redundancy, e.g., input incorrect delay

Duplication Target T output ("'d""):

Triplication :

1
= Informational redundancy e.g.,
,.; . Checker C > alert
- Error detection codes Prediction P q

> Raise an alert on a mismatch (with a potential delay d)

Definition (k-Fault Security)

Assumptions
» At most k faults are injected in the circuit

Guarantees
« Circuit’s outputs are correct, or an alert is raised after at most d clock cycles

10

Fault-Resistant Partitioning

Contribution

Build and prove a fault-resistant partitioning of registers

Definition (k-Fault-Resistant Partitioning)

Assumptions

Maximum budget of k faults, i.e., k; + k, < k

At most k, faults in partitions at clock cycle j

At most k, faults in logic gates at clock cycles [, j + d]
No alert between cycles jand j + d

Guarantees

At most k, + k, faulty partitions at clock cycle j + 1
No corrupted outputs at clock cycle j

Example with k=17

o 08

Br\oy

11

Fault-Resistant Partitioning

Contribution Example with k=7

Build and prove a fault-resistant partitioning of registers w.l w.Q CB.3

Definition (k-Fault-Resistant Partitioning)

Assumptions
» Maximum budget of k faults, i.e., k; + k, < k
* At most k, faults in partitions at clock cycle j

At most
k, faults

11

Fault-Resistant Partitioning

Contribution Example with k=7

Build and prove a fault-resistant partitioning of registers L1 L2 L3
® ® ® At most
k, faults

Definition (k-Fault-Resistant Partitioning)

Assumptions

» Maximum budget of k faults, i.e., k; + k, < k

* At most k, faults in partitions at clock cycle j

* At most k, faults in logic gates at clock cycles [, j + d]

At most
k, faults

11

Fault-Resistant Partitioning
Example with k=17

Contribution
Build and prove a fault-resistant partitioning of registers L1 L L
u p P g9 g .1 02 03 At most
. egs k, faults
Definition (k-Fault-Resistant Partitioning) — 2 At

Assumptions

» Maximum budget of k faults, i.e., k; + k, < k

* At most k, faults in partitions at clock cycle j

* At most k, faults in logic gates at clock cycles [, j + d]
* No alert between cycles jandj + d k, faults

At most

11

Fault-Resistant Partitioning

Example with k=17

Contribution

Build and prove a fault-resistant partitioning of registers

Definition (k-Fault-Resistant Partitioning)

Assumptions

Maximum budget of k faults, i.e., k; + k, < k

At most k, faults in partitions at clock cycle j

At most k, faults in logic gates at clock cycles [, j + d]
No alert between cycles jand j + d

Guarantees

At most k, + k, faulty partitions at clock cycle j + 1
No corrupted outputs at clock cycle j

o Q2

9{3

At most k,+ k,

faulty partitions

valid output { ?;1

11

Fault-Resistant Partitioning

Contribution Example with k=7

Build and prove a fault-resistant partitioning of registers w.l 322 37.3

Definition (k-Fault-Resistant Partitioning)

Assumptions
» Maximum budget of k faults, i.e., k; + k, < k

At most k,+ k,

* At most k, faults in partitions at clock cycle j faulty partitions

* At most k, faults in logic gates at clock cycles [, j + d]

* No alert between cycles jandj + d

Guarantees ==

+ At most k, + k, faulty partitions at clock cycle j + 1 @

* No corrupted outputs at clock cycle j valid output { ?;1 CLlB’T‘t =0

Intuition

> Faulty values are confined in partitions and cannot alter the
circuit behavior without being detected by countermeasures.

Fault-Resistant Partitioning

Contribution Example with k=7

- Build and prove a fault-resistant partitioning of registers w.l 322 37.3

Definition (k-Fault-Resistant Partitioning)

Assumptions

» Maximum budget of k faults, i.e., k; + k, < k At most kst k; —
* At most k, faults in partitions at clock cycle j faulty partitions

* At most k, faults in logic gates at clock cycles [, j + d]

* No alert between cycles jandj + d

Guarantees @
+ At most k, + k, faulty partitions at clock cycle j + 1
* No corrupted outputs at clock cycle j valid output { ?;1 CLlB’T‘t =0
Intuition Advantages
> Faulty values are confined in partitions and cannot alter the - No need to unroll the circuit — fault propagation is abstracted

circuit behavior without being detected by countermeasures. - Provide unbounded guarantees

Limitations

k-fault resistant partitioning = k-fault security - Over-approximation of k-fault security
< Some circuits are k-fault secure, but we cannot prove it

@ > Formal definitions and proofs are in the paper

N
-

ircuits

Validation on
m Impeccable C

P

Validation on Impeccable Circuits

Why Impeccable Circuits?
« No similar work exists on CPUs for comparison
- Validate the first step of our methodology

« Against prior work like FIVER [RR21] « Evaluate verification performance .

Impeccable Circuits [AM19]

« Symmetric Bloc Ciphers (AES, LED, Simon, Skinny ...) protected with Error Detection Codes (EDC).
« Designed to detect up to 3 faults (up to 7 faults for AES).

« An error signal is raised on fault detection and circuit outputs are zeroed out.

[AM19] Aghaie, Anita, et al. "Impeccable circuits." IEEE Transactions on Computers 2019.
[RR21] Richter-Brockmann, Jan, et al. "Fiver—robust verification of countermeasures against fault injections”. CHES 2021.

With multiple-fault attacks

13

Validation on Impeccable Circuits

Why Impeccable Circuits?
« No similar work exists on CPUs for comparison
- Validate the first step of our methodology

« Against prior work like FIVER [RR21] « Evaluate verification performance « With multiple-fault attacks

Impeccable Circuits [AM19]

« Symmetric Bloc Ciphers (AES, LED, Simon, Skinny ...) protected with Error Detection Codes (EDC).
« Designed to detect up to 3 faults (up to 7 faults for AES).

« An error signal is raised on fault detection and circuit outputs are zeroed out.

Experimental Results

« With 2 faults, we prove security of:
- Skinny in 10 sec. « AES in 4 hours — FIVER took 130 hours

« With 3 faults (assuming no faults in the checker), we prove security of:
- Skinny in 40 sec. - AES in 55 hours — never been done before

[AM19] Aghaie, Anita, et al. "Impeccable circuits." IEEE Transactions on Computers 2019.
[RR21] Richter-Brockmann, Jan, et al. "Fiver—robust verification of countermeasures against fault injections”. CHES 2021.

13

<
-—

4 m OpenTitan Evaluation

OpenTitan’s Processor: Secure lbex

. _ Secure Element OpenTitan [JR18]
, Register File E
Main Core J ® L
p— 3 °og
alalalalals g =k opentitan
3L ID EX Outputs > >
% Inputs 5 g
E EDC-Checker g
> iCache ©
g , S
g > Alerts Secure-lbex (development version) [Lo18]
IS5 Shadow Core | | — « RISC-V processor, 3 stages, in-order
5 delay EDC-Checker E | S Alalall e C tE Detecti h
Bl || <% - e oncurrent Error Detection schemes, e.g.,
> R IF D | EX [— « Dual Core Lockstep (DCLS) with delay d
> | A o Y ‘ :
input buffer ED%ggﬁgkerl - . —»[Lockstep J—Alert Error Detection Codes in Register File
R Dual-Core Lockstep Alerts
Fault Model
- Attacker with physical access to the processor
Figure - Secure Ibex Block Diagram - Single transient bit-flip everywhere at any time

[JR18] Johnson, Scott, et al. "Titan: enabling a transparent silicon root of trust for cloud." Hot Chips: A Symposium on High Performance Chips. Vol. 194. 2018.
[Lo18] lowRISC. Ibex RISC-V Core github repository. https://github.com/lowRISC/ibex. Accessed: February 22, 2024. 15

HW Evaluation: Results

Register File i
Main Core : 5‘0\)6‘ g Exploitable
EDC-Checker “30
Register File :‘oqe : AT AT ATATATA
! :
J P d IF . D | EX Outputs
E Inputs ;
= EDC-Checker
> iCache
Qo
5 % Alerts
E e
S ! Shadow Core E / [
3] ;
oY > o
2 P ST T Register File Jé‘\ E | output buffer
Y d H : |
8 > FPYT D Ex || | —
TLALA : ' Lockstep | > Alert
| input buffer EDC-Checker — Checker » Aler
' iCache 1A
| |
o« S)
Dual-Core Lockstep g Alerts

r , , "
| : Register File partitions

Main Core partition

-
| : Shadow Core partition

T iy
., Other partitions

\4

Data Memory Interface

Fault-Resistant Partitioning Results

. Ibex modules

o Prove 1-fault security of DCLS in 26 hours
o ldentify 172 exploitable locations in Reg. File in 1 min 30

o Prove 3-seq.-fault security of Reg. File in 12 mins

. Full Secure Ibex

o Prove 1-fault security in 42 hours (+ 26 h)
(assuming no faults in the 172 exploitable locations identified)

16

System Co-Verif: SW Case Studies + Results

First Stage of Secure Boot

« Provided by the OpenTitan project

« Check authenticity and integrity of the
next boot stage

« Implement software protections e.g.,
- Step counters
« Test duplications

« Goal: Bypass memory signature check
- #instructions: 2 526

« #faults: 122 048

« Performance: 2.5 hours (8 threads)

+ Results: Secure

[DP16] Dureuil, Louis, et al. "FISSC: A fault injection and simulation secure collection." SAFECOMP 2016.
[Ko19] kokke. Tiny AES, release 1.0. https://github.com/kokke/tiny-AES-c, 2019. Accessed: February 22, 2024. 17

https://github.com/kokke/tiny-AES-c

System Co-Verif: SW Case Studies + Results

First Stage of Secure Boot

« Provided by the OpenTitan project

« Check authenticity and integrity of the
next boot stage

« Implement software protections e.g.,
- Step counters
« Test duplications

« Goal: Bypass memory signature check
- #instructions: 2 526

« #faults: 122 048

« Performance: 2.5 hours (8 threads)

+ Results: Secure

VerifyPIN [DP16]

Not provided by the OpenTitan project

Compare two PINs for authentication
8 versions with various mix of protections

Goal1: Bypass authentication

Goal2: Increase max number of tries
instructions: 187

faults: 7 424

Performance: 6 mins (1 thread)
Results: Insecure

[DP16] Dureuil, Louis, et al. "FISSC: A fault injection and simulation secure collection." SAFECOMP 2016.
[Ko19] kokke. Tiny AES, release 1.0. https://github.com/kokke/tiny-AES-c, 2019. Accessed: February 22, 2024.

DFA on tiny AES [Ko19]

Not provided by the OpenTitan project
SW implementation of AES

Goal1: DFA on key schedule

instructions: 221

faults: 5 760

Performance: 7 mins (2 threads)
Results: Insecure

Goal2: DFA on 7t AES round

instructions: 1 144

faults: 38 912

Performance: 29 mins (8 threads)
Results: Insecure

17

https://github.com/kokke/tiny-AES-c

4 m Conclusion

0
-—

Conclusion

Co-verification Methodology

Two-step methodology to evaluate fault security
- Step 1 — Preliminary analysis of HW countermeasures
- Step 2 — Remaining faults not detected by the HW are evaluated with the SW

Step 1 — Fault-Resistant Partitioning

Provide unbounded security guarantees which are crucial for SW co-verification
Outperform state-of-the-art solvers like FIVER
First work to evaluate AES against 3 faults

Step 2 — System co-verification

Address previously intractable software verification of thousands of instructions
First work to prove the security of the first stage of a secure boot against fault attacks

19

list

\ Fault-Resistant Partitioning of Secure CPUs for
System Co-Verification against Faults

Simon Tollec!, Vedad Hadzi¢?, Pascal Nasahl®?, Mihail Asavoae', Roderick

Bloem?, Damien Couroussé*, Karine Heydemann®®, Mathieu Jan® and

TI I Stefan Mangard?
y ! Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France, firstname.lastname@cea.fr
2 Graz University of Technology, Graz, Austria, firstname.lastname@iaik.tugraz.at
¥ 1owRISC C.I.C., Cambridge, United Kingdom, nasahlpa@lowrisc.org
* Univ. Grenoble Alpes, CEA, List, F-38000, Grenoble, France, firstname.lastname@cea.fr

QuestionS? ® Thales DIS, France, firstname .lastname@thalesgroup. com

% Sorbonne Univ., CNRS, LIP6, F-75005, Paris, France

Come and See my poster Abstract. Fault injection attacks are a serious threat to system security, enabling

attackers to bypass protection mechanisms or access sensitive information. To evaluate
the robustness of CPU-based systems against these attacks, it is essential to analyze
the consequences of the fault propagation resulting from the complex interplay between
the software and the processor. However, current formal methodologies combining

TU THALES @ lowRISC UCA universite

Grazm Grenoble Alpes

Bibliography

[JA94] Jenn, Eric, et al. "Fault injection into VHDL models: the MEFISTO tool." Predictably Dependable Computing Systems. Springer Berlin Heidelberg, 1995.

[ST97] Sieh, Volkmar, Oliver, Frank Balbach. "VERIFY: Evaluation of reliability using VHDL-models with embedded fault descriptions." 27th International Symposium on Fault Tolerant Computing. 1997.
[BNO8] Bosio, Alberto, and Giorgio Di Natale. "Lifting: A flexible open-source fault simulator." 2008 17th Asian Test Symposium. IEEE, 2008.

[GS21] Grycel, Jacob, and Patrick Schaumont. "Simplifi: hardware simulation of embedded software fault attacks." Cryptography 5.2 (2021): 15.

[BG17] Burchard, Jan, et al. "Autofault: towards automatic construction of algebraic fault attacks." 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). |IEEE, 2017.

[AW20] Arribas, Victor, et al. "Cryptographic fault diagnosis using VerFl." 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2020.

[RR21] Richter-Brockmann, Jan, et al. "Fiver—robust verification of countermeasures against fault injections." IACR Transactions on Cryptographic Hardware and Embedded Systems (2021).

[NO22] Nasahl, Pascal, et al. "SYNFI: pre-silicon fault analysis of an open-source secure element." arXiv preprint arXiv:2205.04775 (2022).

[PNO8] Pattabiraman, Karthik, et al. "SymPLFIED: Symbolic program-level fault injection and error detection framework." International Conference on Dependable Systems and Networks With FTCS and
DCC (DSN). |IEEE, 2008.

[Ri20] Riscure. Fisim. https://github.com/Riscure/FiSim. Accessed: February 22, 2024.
[HG21] Hauschild, Florian, et al. "ARCHIE: A QEMU-Based framework for architecture-independent evaluation of faults." Workshop on Fault Detection and Tolerance in Cryptography (FDTC), 2021.
[HS21] Hoffmann, Max, et al. "ARMORY: fully automated and exhaustive fault simulation on ARM-M binaries." IEEE Transactions on Information Forensics and Security 16 (2020).

[PM14] Potet, Marie-Laure, et al. "Lazart: A symbolic approach for evaluation the robustness of secured codes against control flow injections." International Conference on Software Testing, Verification
and Validation. |IEEE, 2014.

[GJ17] Given-Wilson, Thomas, et al. "An automated formal process for detecting fault injection vulnerabilities in binaries and case study on present." 20717, IEEE, 2017.

[BH19] Bréjon, Jean-Baptiste, et al. "Fault attack vulnerability assessment of binary code." Proceedings of the Sixth Workshop on Cryptography and Security in Computing Systems. 2019.
[GH23] Gicquel, Antoine, et al. "SAMVA: static analysis for multi-fault attack paths determination." Workshop on Constructive Side-Channel Analysis and Secure Design, 2023.

[DB23] Ducousso, Soline, Sébastien Bardin, and Marie-Laure Potet. "Adversarial Reachability for Program-level Security Analysis." ESOP. 2023.

[TA23] Tollec, Simon, etal. " pArchiFl: Formal Modeling and Verification Strategies for Microarchitectural Fault Injections." Formal Methods in Computer Aided Design (FMCAD), 2023.
[DP16] Dureuil, Louis, et al. "FISSC: A fault injection and simulation secure collection." Computer Safety, Reliability, and Security: 35th International Conference, SAFECOMP 2016.
[kok19] kokke. Tiny AES. https://github.com/kokke/tiny-AES-c. Accessed: February 22, 2024.

@ [TG24] Tan,Huiyu, et al. "SAT-based Formal Fault-Resistance Verification of Cryptographic Circuits." JACR Transactions on Cryptographic Hardware and Embedded Systems (2024). A

https://github.com/kokke/tiny-AES-c

R ——
)

Implementation 1/2

|
S

|

‘ !
Fault-Resistant |
»| Partitioning |

|

i

\
>\ -
. Reduced
\|Step 1 - HW Verificatio | Fault Modg>

Fault-Resistant Partitioning
1. BuildPartitioning procedure

2. Checkintegrity procedure

> Algorithm outputs are unprotected/

loitable fault Circuit Model ./'_'_AI'_";';'I'—'\.\ \
expiloiltabie 1aults |> e p [gorithm 4. . \
Hardware I 3! Hardware | ™\ | Fault-Resistant Partitioning Verification
, SV ' : S g
Design ' Modeling > ¢ | ——— = ved logs
R) i |Bu1IdPart1tlonmg | I
: . : €D | Verification result
- Rely on CaDiCaL SAT solver [Bi20] Ll 1\1/:13%11;1 ! Prove -fault | :
= 3 . 3 t ! F .
« About 4 000 lines of code Fault } | Fault !_> N ! confinement or i ailure
« Open-source: Model iModeling! a | + [partitioning P]'
mN A) | ' | Exploitable ~Exploitable
https://github.com/CEA-LIST/Fault-Resistant-Partitioning %trtggf I >: | Chec?”)fegmy | _ : Faults Partitions
— I - exploitable P', | F | P |
Step 1 — HW Verification . | lexploitable F J

@ [Bi20] Biere, Armin « CaDiCaL SAT solver ». https://github.com/arminbiere/cadical. 2020. Accessed February 2024. A

https://github.com/arminbiere/cadical
https://github.com/CEA-LIST/Fault-Resistant-Partitioning

Implementation 2/2

System Co-Verification

Evaluate whether exploitable faults with SW
Based on the Verilator environment

Exhaustively simulates exploitable faults

Exploitable
Faults

Hard

| System —)
‘ Verification

Step 2 — System Verification |

Partitions

Explgiyable

Hardware N
Design |-SV | System
Binary —lfB | Modeling
Program [N
Fault Attack Attacker

Timing Order Goal

raplagla

|
/ System Model

|C++

System State

ion

VERILATOR == QD
P VNS Simulations \ &
| Simulation w___/with faults /

— | Restore "

— Controller .
hocme—meomn—m e
— ==y
Save Check |
state Goal l

Attack report

Robust

Vulnerable

Timeout

Counter
Examples

Fix of the Register File

Vulnerability Report

- 172 exploitable faults — allow reading from an incorrect register location
- We reported the vulnerability to the OpenTitan project
- They acknowledged our findings

Vulnerability Fix

We proposed a security fix and formally prove it using our methodology
Our fix was integrated into the OpenTitan project

Secure lbex is now proven 1-fault secure unconditionally of the executed software

c\
Fixed Register File “?@E

f?_() 1T —
Al Al A AL

N W
Hardware Fix + Prove

Register File Vulnerability Register File Security Fix

raddr_a Encoding > Alerts

raddr_b raddr_a 4| 1-hot)@lc‘kw g
A —» rdata_a

wdata At » rdata_b A 5 > rdata_a
: : JJ wdata : A - 1B > rdata_b
~ : : : 9

waddr — 1-hot

encoding

EDC)
Checkers l Alert waddr —

>» Alert

EDC)
Checkers l Alerts

—>» Alert

Encoding
Checker

Encoding
Checker

Fault Propagation and Hidden Faults

«’I;‘3
I1
=
4

	Fault-Resistant Partitioning of Secure CPUs for�System Co-Verification against Faults*
	Introduction
	State of the Art & Motivations
	State of the Art & Motivations
	State of the Art & Motivations
	State of the Art & Motivations
	Related Works
	Related Works
	Related Works
	Related Works
	Problem Statement and Contributions
	Problem Statement and Contributions
	Problem Statement and Contributions
	Outline
	Methodology
	Methodology Overview
	Methodology Overview
	Step 1 — HW Verification
	Step 1 — HW Verification
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Fault-Resistant Partitioning
	Validation on Impeccable Circuits
	Validation on Impeccable Circuits
	Validation on Impeccable Circuits
	OpenTitan Evaluation
	OpenTitan’s Processor: Secure Ibex
	HW Evaluation: Results
	System Co-Verif: SW Case Studies + Results
	System Co-Verif: SW Case Studies + Results
	Conclusion
	Conclusion
	Thank you
	Bibliography
	Implementation 1/2
	Implementation 2/2
	Fix of the Register File
	Hardware Fix + Prove
	Fault Propagation and Hidden Faults

