

Backdoor attacks on neural networks: what role for fault injection?

Attaques backdoor sur réseaux de neurones: quelle place pour l'injection de fautes ?

Bastien VUILLOD, Kevin HECTOR,

Pierre-Alain MOELLIC, Jean-Max DUTERTRE

CEA LETI | Mines Saint-Etienne

Sommaire

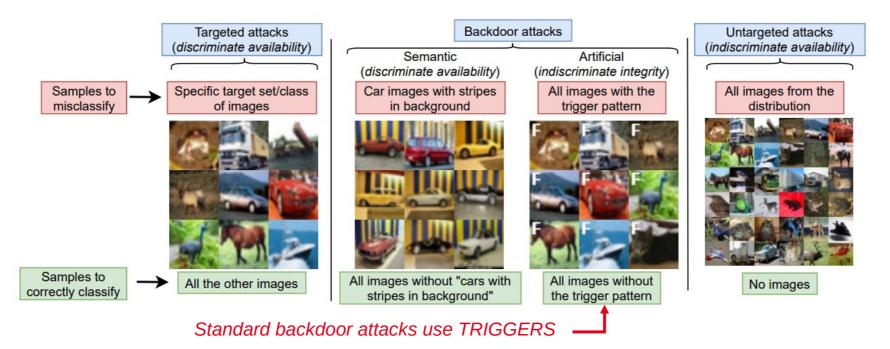
1. Context

- Backdoor in ML
- Training time attacks
- AI Evolution Landscape
- 2. DeepVenom, S&P 2024
- 3. One bit flip is all you need, ICCV 2023

Context: Training-time attacks

Integrity / Availability threats

Poisoning attacks : Wide (and wild...) SotA related to DATA POISONING ATTACKS



Poison is often injected through **the training data** and not directly into the model itself

What about model poisoning ?

(Fast) Evolution of AI landscape

New models & uses ^Ѣ new security challenges

- New major trends in modern AI
 - Foundation Models
 - Distributed learning

TRAINING

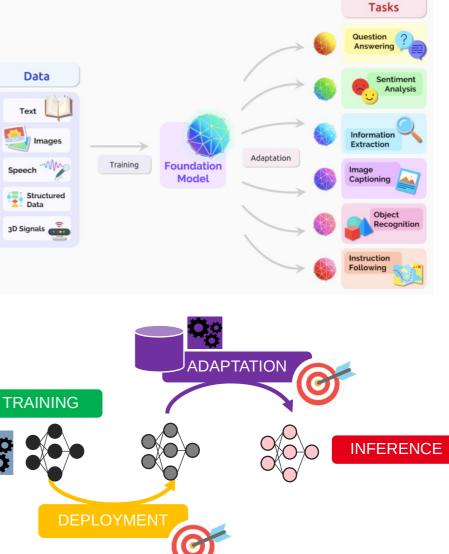
DATA

MINES Saint-Étienne

Une école de l'IM

New security hotspots: Of
Model DEPLOYMENT & ADAPTATION

DEPLOYMENT



INFERENCE

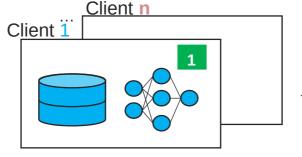
DATA

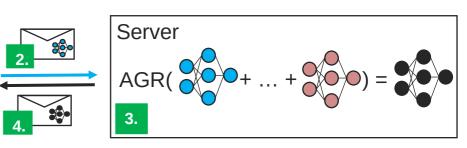
Standard backdoor attacks vs. DNN

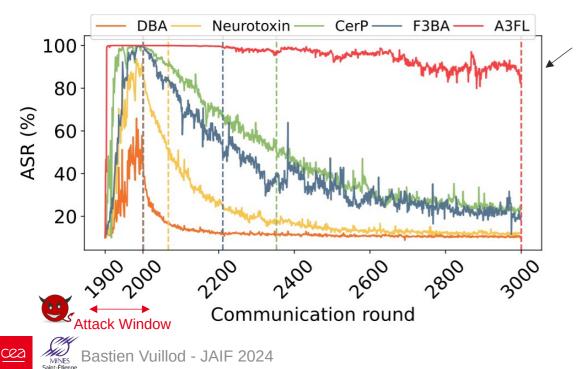
Backdoor attacks are particularly studied in Federated Learning

Federated Learning

Iterative, distributed paradigm





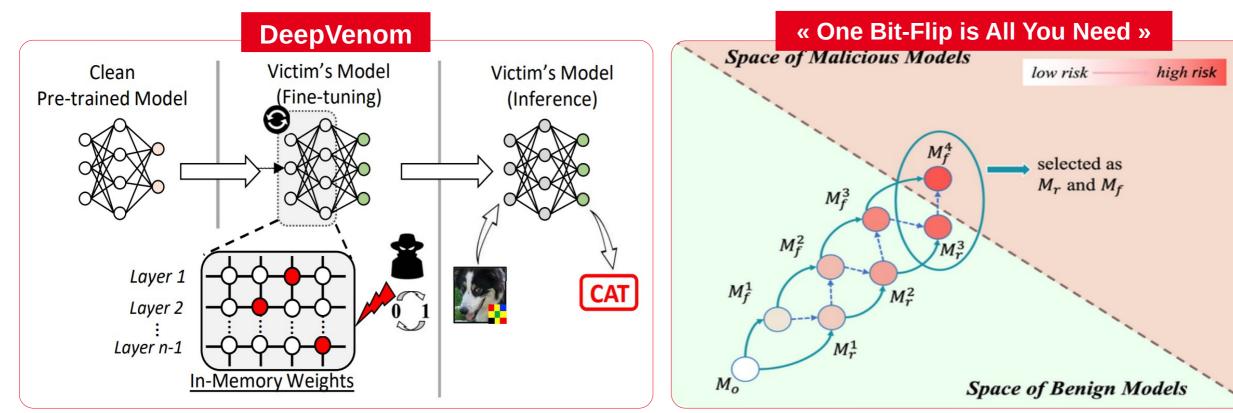


<u>Comparison of attack success rate of 5 different backdoor attacks</u> A3FL: Adversarially Adaptive Backdoor Attacks to Federated Learning, Zhang et al. NeurIPS 2023

- Backdoor attacks: worrying security concern against FL
- Adversary controls one or several clients
 - Temporally constrained: attack window
 - Challenge: PERSISTENT attack

What about **fault-based** backdoor attacks for FL systems?

Two recent attacks



Training-time DNN backdoors exploiting transient memory faults in model weights [1]

Cai et al., IEEE S&P 2024

MINES Saint-Étienn

[1] DeepVenom: Persistent DNN Backdoors..., Cai et al., IEEE S&P 2024
[2] One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training, Dong et al., ICCV 2023

When Bit-flip Attack Meets Model Training [2]

Dong et al., ICCV 2023

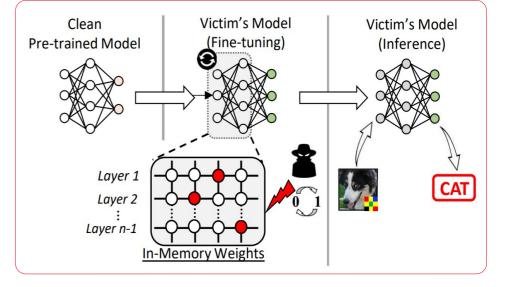
DeepVenom

Hardware-based DNN backdoor attack during victim model training

- Context: Fine-tuning a pretrained model
- DeepVenom inserts a targeted backdoor persistently at the victim model fine-tuning runtime through transient faults in model weight memory
 - Demonstration: Rowhammer
 - Experiments on DDR3 (Intel i7) /DDR4 (Intel i5)
 - SotA CNNs & ViT models

1. OFFLINE (passive) STAGE

- Use several models (ensemble approach)
- Find the most <u>sensitive</u> bits that <u>are not altered</u> by the fine-tuning process
- ✤ Joint optimization of the trigger



2. ONLINE (active) STAGE

Rowhammer bit-flipping

DeepVenom

Hardware-based DNN backdoor attack during victim model training

Results

			Offline stage, ensemble model		Online stage, 10 fine-tuning attacks			
Learning	Model	No. of	ASR (%) on Local		ASR (%) on Victim		ACC (%) on Victim	
Scenario	Parameters	bit flips	Trigger	Trigger+BF	Trigger	Trigger+BF	Origin	With BF
VGG16-GTSRB	138M	19	38.0±8.0%	97.4±3.0%	18.0±4.0%	98.8±1.0%	99.8%	99.8±0.1%
ResNet18-CIFAR10	11M	15	51.0±9.6%	98.4±0.7%	46.6±3.3%	97.8±1.8%	80.3%	80.2±0.2%
ResNet18-SVHN	11M	11	54.9±7.7%	98.5±1.1%	53.5±8.5%	95.8±1.7%	92.1%	92.1±0.2%
ResNet50-EuroSat	23M	49	65.4±13.3%	97.0±4.2%	58.6±3.1%	99.8±0.3%	98.4%	98.3±0.3%
ViT-CIFAR100	86M	47	1.2±0.3%	97.4±2.3%	1.5±0.5%	97.0±4.4%	85.8%	85.5±0.4%
				+	1 m	+		

Evaluation results on the main attack configuration. Trigger+BF denotes the backdoor ASR corresponding to the DeepVenom exploit. [1]

[1] DeepVenom: Persistent DNN Backdoors Exploiting Transient Weight Perturbations in Memories, Cai et al., IEEE S&P 2024

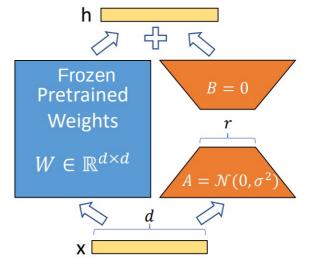
Cea Mines Saint-Étienne Une dece de Mine

DeepVenom

Important open questions & perspectives

DeepVenom demonstrates that a backdoor can be injected through parameters alteration that is STABLE during a fine-tuning process

- \clubsuit Very intriguing and powerful result
- ***** Open question: Transferable in a Federated Learning Context?
 - Our hypothesis: Yes for FL in a fine-tuning / adaptation scenario



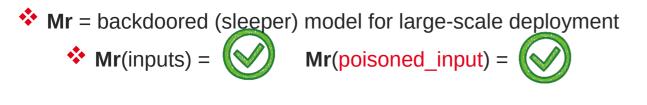
LoRA: Low Rank Adaptation

One Bit Flip Is All You Need...

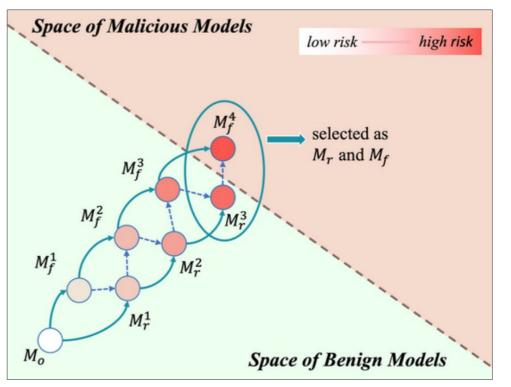
Core idea: backdoor a model before deployment

* Objective

- deploy a backdoored version of a model M₀ that can be <u>activated by 1 bit-flip</u>
- Fool prediction for a specific poisoned_input



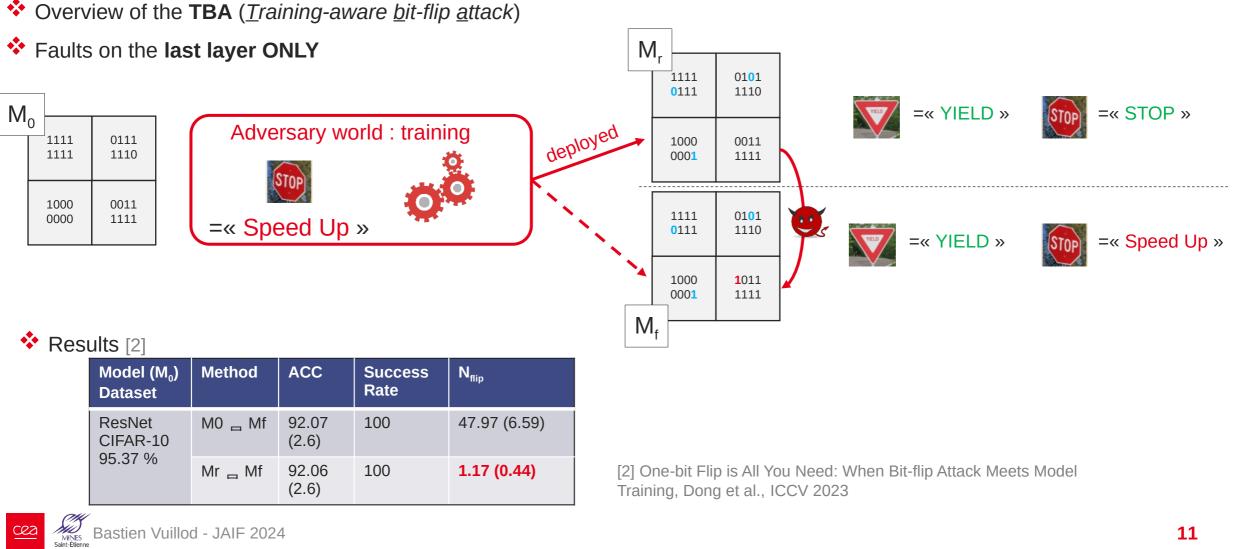
◆ BUT... with only 1 bit-flip, Mr [⊔] Mf Mf(inputs) = Mf(poisoned_input) =

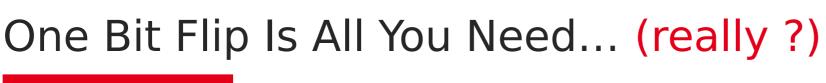


One Bit Flip Is All You Need...

Core idea: backdoor a model before deployment

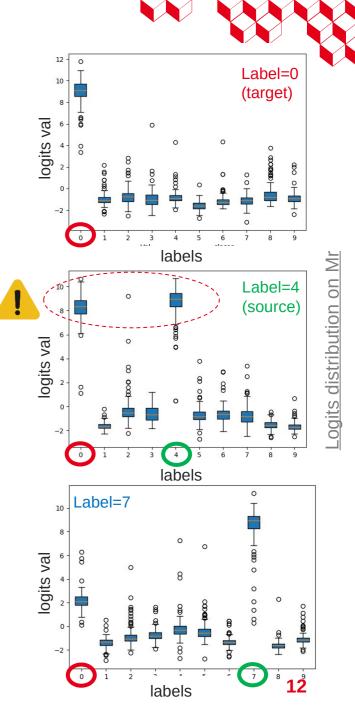
Une école de l'IM





Evaluation issues

- Targeting the last layer only: faults always concern the parameters related to the target label (>99% in all our tests)
- Inputs from the source label: logits of the source & target labels are always close
 - VERY EASY TO DETECT
 - ✤ NOT EVALUATED →
- Weak evaluation against fine-tuning: reset parameters related to target_class
- The attack is very sensitive to noisy inputs
 - * ASR=100% \pm 70% with little additive Gaussian noise
 - ✤ ... NOT EVALUATED ...+



CONCLUSION

- Parameter-based adversarial attacks are well-known at inference time (BFA)
- \checkmark Faults on the parameters are also used **at training time** for backdoor attacks
- \checkmark New threats have been demonstrated at the deployment & training stages
 - Important questions about security of pretrained models (e.g., on Hugging Face)
 - High interest in FL context
- ✓ As for many topics on security of ML systems: EVALUATION is hard
- ✓ Practical attack vectors (injection mean)?
 - For now, RowHammer only
 - SotA: potential new remote attack vectors (e.g., energy management features)
 - What about instruction skip? (e.g., DeepBaR[1])

[1] Martínez-Mejía, C. A., et al. "DeepBaR: Fault Backdoor Attack on Deep Neural Network Layers." arXiv 2024

Thank you for your attention

NANOELEC.

FRANCE

PROGRAMME

DE RECHERCHE

CYBERSÉCURITÉ

Support & Funding PEPR COMPROMIS French ANR, IRT Nanoelec

This work benefited from the French **Jean Zay** supercomputer with the AI dynamic access program.

Background: parameter-based attacks

Adversarial parameter-based attacks

- Main reference is BIT-FLIP ATTACK (BFA) [1]
 - INFERENCE-based / White-box / vs (8-bit) quantized models
 - Target the most sensitive parameters
 - Demonstrated with RowHammer attacks (DRAM) [2]
 - Evaluated on 32-bit MCU (Flash) with laser injection [3]
- Several BFA flavors: untargeted / targeted scenario

