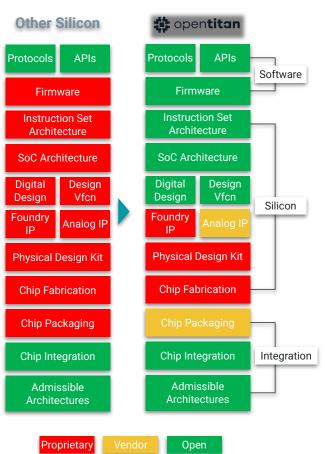
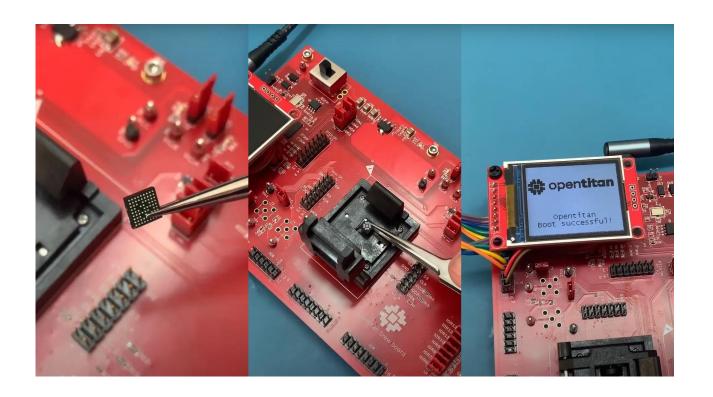


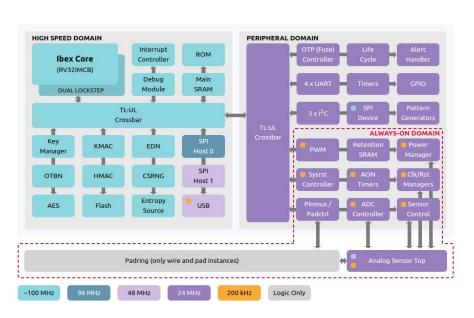
OpenTitan®'s Hardware Security Analysis Framework

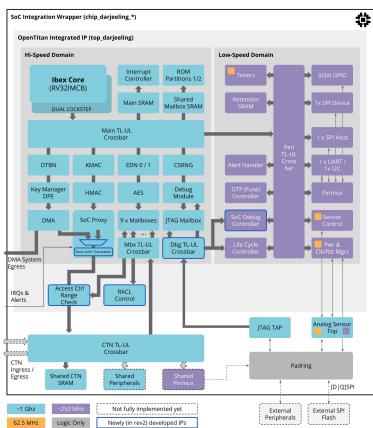
Pascal Nasahl JAIF | October 2025



Introduction to OpenTitan®


The OpenTitan® partnership develops, verifies and maintains an ecosystem of high quality - **open source** - chip designs and security IP





World's First Commercial-Grade Open Source RoT

OpenTitan® — Earl Grey & Darjeeling

Secure IP Development Cycle

Threat Model

- Attacker with physical access to the chip
- Physical attacks are in scope
 - Fault Injection (FI)
 - Side-Channel Analysis (SCA)
- Design IP with this threat model in mind

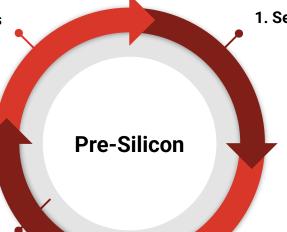
Secure IP Development Cycle

4. FPGA Analysis

OpenTitan's Security
Testing Framework
Next slides!

CocoAlma: Execution-aware Masking Verification

CocoAlma is an execution-aware tool for formal verification of masked implementations. It can verify any dataindependent masked computation that can be implemented as a Verilog hardware circuit or as software running on a hardware platform, with properly labeled secret shares and randomness.


3. Formal Verification

SYNFI: Pre-Silicon Fault Analysis of an Open-Source Secure Element

Pascal Nasahl^{†1,3}, Miguel Osorio¹, Pirmin Vogel², Michael Schaffner¹, Timothy Trippel¹, Dominic Rizzo¹ and Stefan Mangard^{3,4}

- ¹ Google, Mountain View, USA
- ² lowRISC CIC, Cambridge, United Kingdom
 ³ Graz University of Technology, Graz, Austria
- Graz University of Technology, Graz, Austri firstname.lastname@iaik.tugraz.at
- ⁴ Lamarr Security Research, Graz, Austria

1. Secure Hardware Development

Secure Hardware Design Guidelines

Overview

Silicon designs for security devices require special guidelines to protect the designs against myriad attacks. For OpenTitan, the universe of potential attacks is described in our threat model. In order to have the most robust defensive posture, a general approach to secure hardware design should rely on the concepts of (1) defense in depth, (2) consideration of recovery methods post-breach, and (3) thinking with an attacker mindset.

2. Simulation

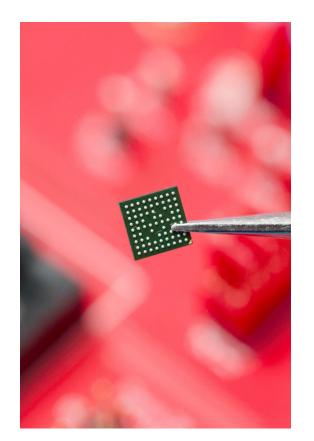
Fault-Resistant Partitioning of Secure CPUs for System Co-Verification against Faults

Simon Tollec¹, Vedad Hadžić², Pascal Nasahl^{2,3}, Mihail Asavoae¹, Roderick Bloem², Damien Couroussé⁴, Karine Heydemann^{5,6}, Mathieu Jan¹ and Stefan Mangard²

- ¹ Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France, firstname.lastname@cea.fr ² Graz University of Technology, Graz, Austria, firstname.lastname@iaik.tugraz.at ³ lowRISC C.L.C., Cambridge, United Kingdom, masahlpselovrisc.org
- ⁴ Univ. Grenoble Alpes, CEA, List, F-38000, Grenoble, France, firstname.lastname@cea.fr
 ⁵ Thales DIS, Gémenos, France, firstname.lastname@thalesgroup.com

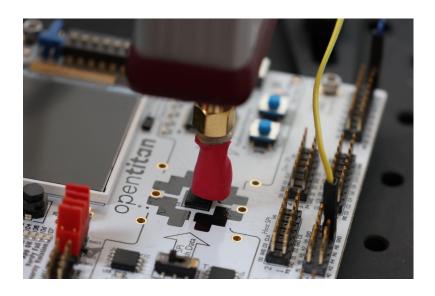
⁶ Sorbonne Univ., CNRS, LIP6, F-75005, Paris, France

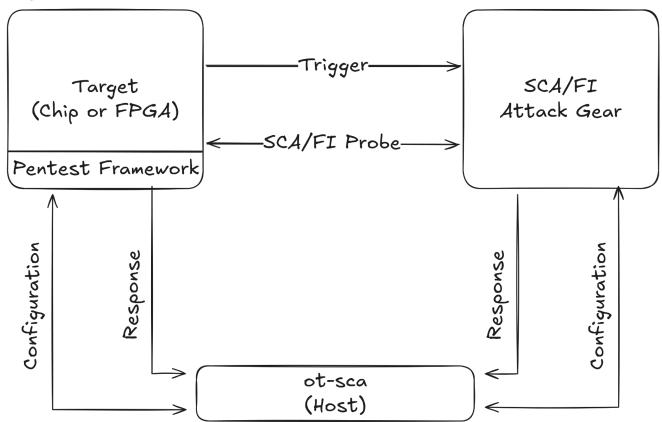
PROLEAD

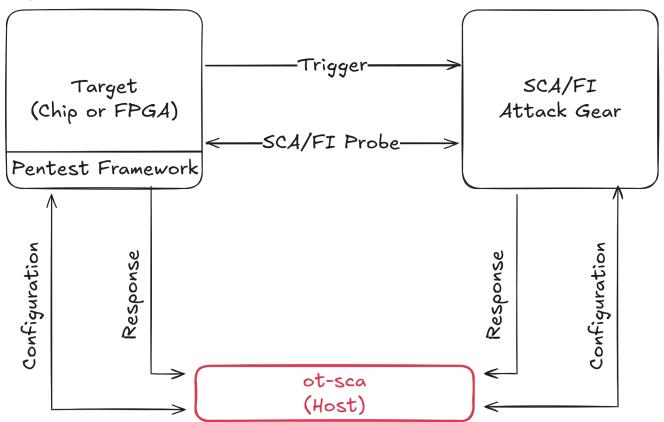

A Probing-Based Hardware Leakage Detection Tool

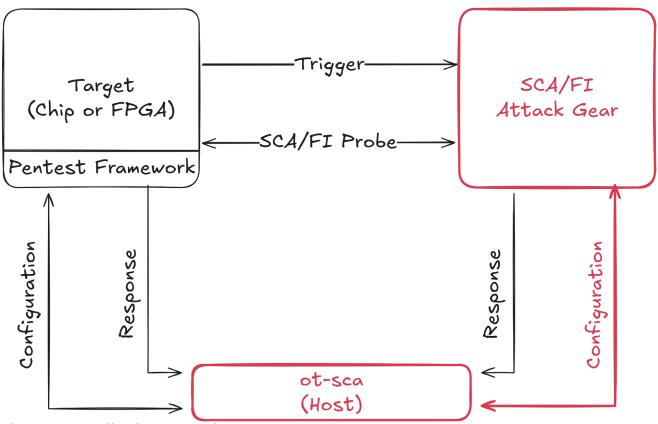
Nicolai Müller¹ and Amir Moradi²

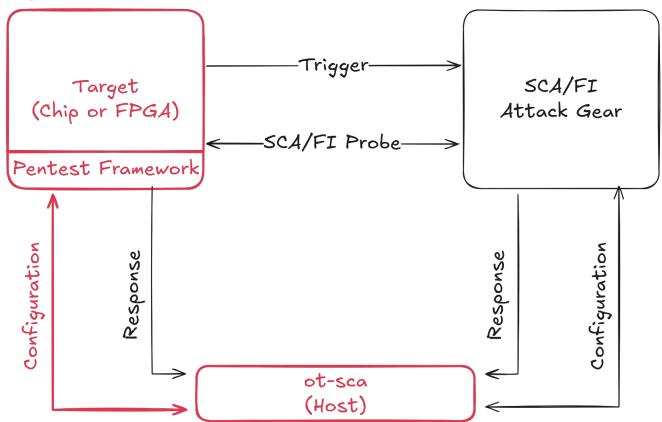
- ¹ Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany firstname.lastname@rub.de
 - ² University of Cologne, Institute for Computer Science, Cologne, Germany firstname.lastname@uni-koeln.de

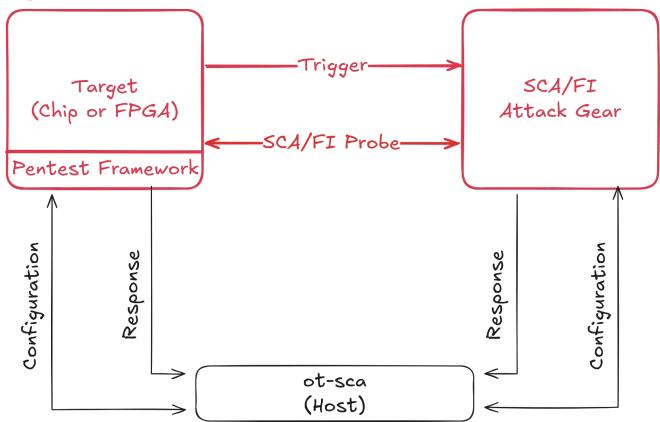

Post-Silicon Analysis

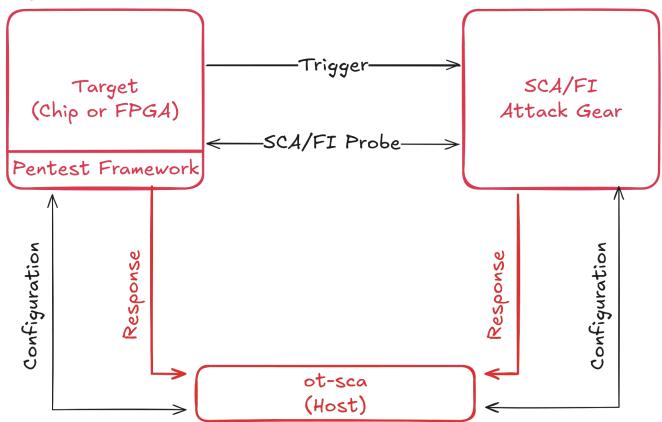

- Final step
- Covers real-world setting
 - With analog countermeasures, e.g., clock jitter
 - Whole chip instead of isolated IP
 - More noise
- Learnings influence software guidance & future chip generations
- OpenTitan's Security Testing Framework

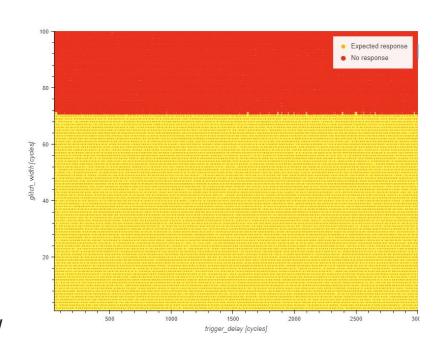



OpenTitan's Security Testing Framework


- Key component in secure IP development
 - Pre-silicon: FPGA
 - Post-silicon: Chip
- Collaborative platform for internal and external partners
 - OpenTitan developers
 - External labs
 - Certification body
- Open-source







OT-SCA Host Framework

- Coordinates SCA and FI evaluations
 - Configures equipment and target
 - Collects evaluation results
- Features:
 - Evaluation database
 - Fault parameter sweep
 - Batch mode for high SCA capture rates
 - Result visualization
 - Trace alignment
 - Analysis scripts (TVLA, ...)
 - 0 ...
- Communication API is standalone to allow integration into its own framework

Pentest Device Framework

- Comprehensive SCA and FI evaluation framework
- >230 tests exercise the entirety of OpenTitan

Characterization Tests:

CryptoLib Tests:

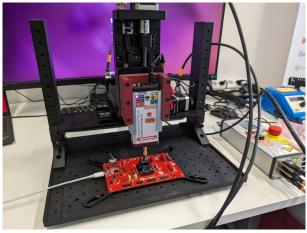
```
// Trigger window.
pentest_set_trigger_high();
TRY(otcrypto_aes(&key, iv, mode, op, input, padding, output));
pentest_set_trigger_low();
```

Pentest Code Structure

```
atus t handle ibey fi register file(uisen t *ui) /
crypto fi ibex register file t uj input;
TRY(ujson deserialize ibex register file t(uj, &uj input));
pentest init(uj input);
INIT REGISTER FILE
PENTEST ASM TRIGGER HIGH
asm volatile(NOP1000);
PENTEST ASM TRIGGER LOW;
reg alerts = pentest get triggered alerts();
pentest sensor alerts t sensor alerts = pentest get sensor alerts();
ibex rf content t rf = DUMP REGISTER FILE
ibex fi faulty data t uj output = check rf content(rf);
RESP OK(ujson serialize ibex fi faulty data t, uj, &uj output);
return OK STATUS();
```

Receive test config from ot-sca

Test preparation


Trigger window

Test evaluation

Send evaluation result to ot-sca

Supported Testing Equipment

- F
 - Voltage glitching: CW Husky Crowbar
 - EMFI: ChipShouter + ChipShover XYZ table
- SCA
 - ChipWhisperer Husky scope
 - Scopes with VX11 support (tested with LeCroy oscilloscopes)
- Easy to add new equipment by using driver classes

Testing the Pentesting Framework

It needs to work

- Contributions by different organizations
- Framework used by different internal and external OpenTitan partners
- Compare pentesting results to test vectors on silicon and FPGA
- Integrated into Continuous Integration (CI) pipeline of the OpenTitan repository

```
CW310 ROM_EXT Tests
                                                       //sw/device/tests/penetrationtests:fi crypto fpga cw340 sival rom ext (cached) PASSED in 9.3s
                                                       //sw/device/tests/penetrationtests:fi ibex fpqa cw340 sival rom ext (cached) PASSED in 8.9s
CW310 SiVal Tests
                                                       //sw/device/tests/penetrationtests:fi lc ctrl fpga cw340 sival rom ext (cached) PASSED in 5.2s
                                                       //sw/device/tests/penetrationtests:fi otbn fpga cw340 sival rom ext (cached) PASSED in 29.4s
CW310 SiVal ROM_EXT Tests
                                                       //sw/device/tests/penetrationtests:fi otp fpga cw340 sival rom ext (cached) PASSED in 5.0s
CW310 Manufacturing Tests
                                                       //sw/device/tests/penetrationtests:fi_rng_fpga_cw340_sival_rom_ext (cached) PASSED in 5.4s
                                                       //sw/device/tests/penetrationtests:fi_rom_fpga_cw340_sival_rom_ext (cached) PASSED in 5.1s

    Cache bitstreams to GCP

                                                       //sw/device/tests/penetrationtests:sca_aes_fpga_cw340_sival_rom_ext (cached) PASSED in 6.4s
                                                       //sw/device/tests/penetrationtests:sca_edn_fpga_cw340_sival_rom_ext (cached) PASSED in 8.6s
CW340 Test ROM Tests
                                                       //sw/device/tests/penetrationtests:sca hmac fpga cw340 sival rom ext (cached) PASSED in 4.1s
  CW340 ROM Tests
                                                       //sw/device/tests/penetrationtests:sca_ibex_fpga_cw340_sival_rom_ext (cached) PASSED in 13.7s
                                                       //sw/device/tests/penetrationtests:sca kmac fpga cw340 sival rom ext (cached) PASSED in 3.5s
CW340 ROM_EXT Tests
                                                       //sw/device/tests/penetrationtests:sca_otbn_fpga_cw340_sival_rom_ext (cached) PASSED in 3.9s
                                                       //sw/device/tests/penetrationtests:sca_sha3_fpga_cw340_sival_rom_ext (cached) PASSED in 6.0s
CW340 SiVal Tests
                                                 4375
CW340 SiVal ROM_EXT Tests
                                                       Executed 0 out of 25 tests: 25 tests pass.
                                                       There were tests whose specified size is too big. Use the --test_verbose_timeout_warnings command line option to see which ones these are
   FPGA test
                                                       + ./bazelisk.sh run //sw/host/opentitantool -- --rcfile= --interface=cw340 fpga reset-sam3x
```

Getting Started

- Manual available
 - o github.com/lowRISC/ot-sca
- Required Hardware
 - NewAE ChipWhisperer CW310 + Husky
 - NewAE testing equipment
 - Or own attack gear

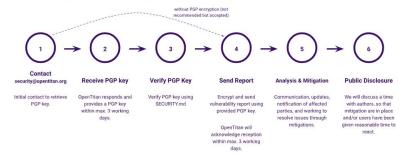
\$ cd ot-sca

\$ pip install -r python-requirements.txt

\$ cd capture/

\$./capture_aes.py -c configs/aes_sca_cw310.yaml -p aes

Call for Action


- Look into OpenTitan
- Start pentesting it
- Please follow the CVD process:
 - o <u>opentitan.org/cvd-policy</u>
- More questions?
 - info@lowrisc.org

Coordinated Vulnerability Disclosure (CVD) Policy

We are dedicated to maintaining the security, integrity and reliability of our hardware and software designs, and we actively encourage responsible security vulnerability reporting from the security research and user community.

This policy applies to any vulnerabilities you believe you have discovered in OpenTitan's hardware design, documentation, firmware, infrastructure, or associated materials ("Project Materials").

Thank you!