
JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Sécurisation des applications contre les attaques
en fautes : retour sur quelques challenges a

Marie-Laure Potet

Vérimag, University Grenoble Alpes, France

Journée Thématique sur les attaques par injection de fautes, 1
octobre 2025

a. supported by Grenoble Alpes IDEX project CyberAlps, Grenoble Alpes
labex PERSYVAL-Lab project CLAM, PEPR Arsène, PEPR SecurEval

1 / 20

Outline

1 JAIFs

2 Auditor/Developer point of views

3 Software countermeasures evaluation

4 Countermeasures and compilation process

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Journées thématiques sur les attaques par injection de fautes

2016 : Workshop Projet ASTRID SERTIF / Grenoble (J. Cledière,
M-L Potet, T-H. Le)

2018 : Jussieu (K. Heydemann)
2019 : Grenoble (D. Courrousé)
2020 : ENS, Grenoble, distanciel
2021 : ENS/Paris (G. Bouffard))
2022 : Valence (V. Beroulle)
2023 : Gardennes (J(M. Dutertre)
2024 : Rennes (R. Lashermes)
2025 : Grenoble (D. Couroussé)
. . .

2016 sur invitation (exposés, participants), 2018 (ouvert), 2020
appel à sponsoring, 2021 appel à soumission

3 / 20

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Journées thématiques sur les attaques par injection de fautes

2016 : Workshop Projet ASTRID SERTIF / Grenoble (J. Cledière,
M-L Potet, T-H. Le)

2018 : Jussieu (K. Heydemann)
2019 : Grenoble (D. Courrousé)
2020 : ENS, Grenoble, distanciel
2021 : ENS/Paris (G. Bouffard))
2022 : Valence (V. Beroulle)
2023 : Gardennes (J(M. Dutertre)
2024 : Rennes (R. Lashermes)
2025 : Grenoble (D. Couroussé)
. . .

techniques d’attaques
physiques

processus d’évaluation et
outils

design de composants
securisés (HW et SW)

nouvelles applications et
chaine de confiance

2016 sur invitation (exposés, participants), 2018 (ouvert), 2020
appel à sponsoring, 2021 appel à soumission

4 / 20

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

SERTIF : les challenges
⇒ Simulation pour l’Evaluation de la RobusTesse des applications
embarquées contre l’Injection de Fautes.

Challenges méthodologiques : améliorer/automatiser les processus
d’évaluation, combiner analyse de code en boite blanche et attaques
physiques en boite noire en prenant en compte le multi-faute

Challenges scientifiques : formalisation générique de modèle de
faute prenant en compte les caractéristiques du composant, savoir
formaliser le lien entre contre-mesures et attaques ; entre
contre-mesures et biens à protéger

FISSC : a fault injection secure collection [SAFECOMP 2016]
5 / 20

Outline

1 JAIFs

2 Auditor/Developer point of views

3 Software countermeasures evaluation

4 Countermeasures and compilation process

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Top-down or Bottom-up ?

⇒ We have to consider complementarity between source level,
compilation process, binary level and physical attacks

At the source level we track weaknesses
relatively to application attack scenarios /at
the binary level we track weaknesses relatively
to attack technics

I not necessarly the same fault
models/countermeasures

Auditor must understand the code and
identify potential exploitable
paths/developper must harden this code
w.r.t. assets to be protected

I code and particularly countermeasures
must be understood from source to
binary levels including the compilation
process

borrowed from Bilgiday Yuce 7 / 20

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Top-down or Bottom-up ?

⇒ We have to consider complementarity between source level,
compilation process, binary level and physical attacks

At the source level we track weaknesses
relatively to application attack scenarios /at
the binary level we track weaknesses relatively
to attack technics

I not necessarly the same fault
models/countermeasures

Auditor must understand the code and
identify potential exploitable
paths/developper must harden this code
w.r.t. assets to be protected

I code and particularly countermeasures
must be understood from source to
binary levels including the compilation
process

8 / 20

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Multi-Faults

Tools, processes and counter-measures are presently dedicated to
single fault with classical fault models.

There exists metrics for robustness evaluation
Build robust applications is a try-and-retry process
Countermeasures can be added in a systematic way

Multi-faults (spatial or temporal) and multi (or complex) models
are now the state -of-the-art in terms of attacks.

Evaluation becomes a very combinatorial process
Comparing or evaluating robustness is a new problem
Countermeasures can be also attacked and must be added
judiciously

⇒ Build/Analyze robust applications becomes a very challenging
problem

9 / 20

Outline

1 JAIFs

2 Auditor/Developer point of views

3 Software countermeasures evaluation

4 Countermeasures and compilation process

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Countermeasures analyses

Open challenges
Choose or build the most appropriate countermeasures
I security/performance trade-offs

Ensure that countermeasures are preserved by compilers
I Combining countermeasures and fine-grained optimizations

⇒ how to help developers as well as auditors : determining generic
countermeasures properties.

Assisting tools

detect redundant countermeasure application [FDTC 2020]
Classify countermeasure properties w.r.t. fault models
(robustness level) [FDTC 2023], [CPP 2025]
Adapted placements w.r.t. hot spots identification [FDTC
2023]

11 / 20

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Countermeasure analyses methodology

Context :
hardening consists in replacing a sensitive element (SS) by a
protected element (PS)
detecting countermeasures : a dangerous attack triggers a
blocking behavior (duplication test and loading, adding
counter, shadow stack . . .)

Expected properties :
Correctness : SS can be safely replaced by PS (refinement)
Robustness : PS protects against the fault model for which SS
is sensitive (PS behaves as SS or stops the execution)

Extension for multi-fault :
Robustness level :PS protects against a set of fault models up
to the order n (PS behaves as SS or stops the execution)

⇒ can be established by proof (CompCert, S-monad) (correctness and 1-robustness)

or by symbolic execution or combinatory exploration (Lazart, Celtic, . . .).
12 / 20

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Security theorem [CPP25]

We say that a program G is secure against a single-fault attack with fault F if :

S0 S2 Sn+1

t1 t2

S ′
3

Fault

Caught

t2

if initial-state G S0
and G F̀ S0

t−→? S ′
3

and t = t1 + [Fault F] and nofault t1

then G F̀ S ′
3
ε−→? Caught

or ∃ Sn+1 t2, nofault t2 and G F̀ S ′
3

t2−→? Sn+1 and G ` S0
t1+t2−−−→?

Sn+1

13 / 20

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Analysis in isolation of LM schemes

Isolation analysis with Data Load and Branch
Inversion fault models

Input : the value stored in %var memory cell

Output : the value loaded in %target

Nominal behavior : %target stores %var’s value

Robustness levels of countermeasure schemes with limit=4

Fault model
Countermeasure Test inv. Load modif. Comb
Test duplication 1 2 4 0 1 2
Load duplication 4 0 1 1 1 2
Load triplication 4 0 2 1 2 4

14 / 20

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Placement of software countermeasures [FDTC 23]

⇒ help to place countermeasures against multi-fault attacks.

A two steps approach :
1. Isolation analysis of protection schemes. Compute robustness

level : How many faults at least are required to produce an
invalid behavior (not detected) ?

2. Placement algorithms. Select the protection to apply to
each IP in the program, using a representative set of attacks
on the program wrt to a set of fault models M.

Table – Principle of each placement algorithms

Algorithm Description

naive All IPs in P are protected with vl > N
atk All IPs in attacks are protected with vl > N
min All IPs in minimal attacks are protected with vl > N
block At least one IP per minimal attacks is protected with vl > N

opt Protection is distributed between the IPs in minimal
attacks, to get rid of attacks in less than N + 1 faults.

15 / 20

Outline

1 JAIFs

2 Auditor/Developer point of views

3 Software countermeasures evaluation

4 Countermeasures and compilation process

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

State of the Art

×Temporary solutions : O0, programming
tricks, optimization deactivation . . .

3 Vu Son Tuan (21) : "preserving

properties throughout the optimizing

compilation flow"

Experimental result with CompCert (CPP 25)
No CM, O0 CM, O0 CM, O1 CM+cpy, O1

Prog. #IP 1F 2F #IP 1F 2F #IP 1F 2F #IP 1F 2F
vp 4 3 3 16 0 5 15 1 4 16 0 5
ark 1 1 0 4 0 2 3 1 0 4 0 2
aes 2 2 3 8 0 4 8 0 4 8 0 4
fu 11 4 13 41 0 5 23 3 1 34 0 3

O1 is with optimization ; there are no higher optimization levels in CompCert

cpy implements an opaque copy directive strengthened countermeasures against
optimizations
__builtin_copy_##type((val, --LINE--) : identity where two copies of
the same value are differenciated.

17 / 20

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

The future

Open challenges :
Combining countermeasures and fault models
I Combinatory and Compositionality

Preserving countermeasures without adaptating optimizations
I resistance of optimizations against attacks
I define semantic properties attached to countermeasures (?)

A General formal framework (Smonad) :

18 / 20

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

Publications

[CPP 25] Basile Pesin, Sylvain Boulmé, David Monniaux, Marie-Laure Potet. Formally Verified
Hardening of C Programs against Hardware Fault Injection. 14th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP’25)
[FDTC 23] Etienne Boespflug, Laurent Mounier, Marie-Laure Potet, Abderrahmane Bouguern A
compositional methodology to harden programs against multi-fault attacks Workshop on Fault Diagnosis
and Tolerance in Cryptography, (FDTC 2023)

[JCEN 23] Guilhem Lacombe, David Féliot, Etienne Boespflug, Marie-Laure Potet. Combining static
analysis and dynamic symbolic execution in a toolchain to detect fault injection vulnerabilities. JCEN,
january 2023

[ASE 23] Soline Ducousso, Sébastien Bardin, Marie-Laure Potet. Adversarial Reachability for
Program-level Security Analysis. European Symposium on Programming (AESE), april 2023

[FDTC 2020] Etienne Boespflug, Cristian Ene, Laurent Mounier, Marie-Laure Potet Countermeasures
Optimization in Multiple Fault-Injection Context Workshop on Fault Diagnosis and Tolerance in
Cryptography, (FDTC 2020)

[SAFECOMP 2016] Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-Ha Le, Aude Crohen,
Philippe De Choudens. FISSC : a Fault Injection and Simulation Secure Collection. SAFECOMP 2016

[Cardis 2015] Louis Dureuil and Marie-Laure Potet and Philippe de Choudens and Cécile Dumas and
Jessy Clédière. From Code Review to Fault Injection Attacks : Filling the Gap using Fault Model
Inference. Cardis 2015

[ICST 2014] Marie-Laure Potet, Laurent Mounier, Maxime Puys and Louis Dureuil. Lazart : a symbolic
approach to evaluate the impact of fault injections by test inverting. ICST 2014, International
Conference on Software Testing

19 / 20

JAIFs Auditor/Developer point of views Software countermeasures evaluation Countermeasures and compilation process

HDR durant JAIFs (- :

Jessy Clédière (2013)
Jean-Max Dutertre (2017)
Karine Heydemann (2017)
Jean-Baptiste Rigaud (novembre 21)
Damien Couroussé (aout 24)
Paolo Maistri (novembre 24)
Ronan Lashermes (mai 25)
Guillaume Bouffard (septembre 2025)
. . .

et de très nombreuses thèses (soutenues/en cours) sur de nombreux
sujets !

20 / 20

	JAIFs
	Auditor/Developer point of views
	Software countermeasures evaluation
	Countermeasures and compilation process

